高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限链环上渐近优的多元扭转码

高健 崔青香 郑雨琦

高健, 崔青香, 郑雨琦. 有限链环上渐近优的多元扭转码[J]. 电子与信息学报. doi: 10.11999/JEIT250032
引用本文: 高健, 崔青香, 郑雨琦. 有限链环上渐近优的多元扭转码[J]. 电子与信息学报. doi: 10.11999/JEIT250032
GAO Jian, CUI Qingxiang, ZHENG Yuqi. Asymptotically Good Multi-twisted Codes over Finite Chain Rings[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250032
Citation: GAO Jian, CUI Qingxiang, ZHENG Yuqi. Asymptotically Good Multi-twisted Codes over Finite Chain Rings[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250032

有限链环上渐近优的多元扭转码

doi: 10.11999/JEIT250032 cstr: 32379.14.JEIT250032
基金项目: 山东省自然科学基金 (ZR2024YQ057, ZR2022MA024),国家自然科学基金(12071264)
详细信息
    作者简介:

    高健:男,副教授,博士,博士生导师,研究方向为编码理论及其应用

    崔青香:女,硕士生,研究方向为编码理论及其应用

    郑雨琦:女,硕士,研究方向为编码理论及其应用

    通讯作者:

    高健 dezhougaojian@163.com

  • 中图分类号: TN911.22

Asymptotically Good Multi-twisted Codes over Finite Chain Rings

Funds: The Natural Science Foundation of Shandong Province (ZR2024YQ057, ZR2022MA024), The National Natural Science Foundation of China (12071264)
  • 摘要: 对码的渐近性的研究是纠错码理论中的一个核心内容,Shannon第二定理指出,当码长趋于无穷时,存在码率接近信道容量且译码错误概率趋近于零的编码方案。对码的渐近性进行研究可以验证这一理论极限的可达性。在设计和选择编码方案时,渐近性是重要的比较依据,研究码的渐近性有助于理解码的性能极限和设计高效能纠错码,助力实际编码方案的设计与优化,确保其在长码场景下逼近理论最优性能,同时平衡纠错能力、码率与复杂度。该文给出了有限链环上1-生成元多元扭转码是自由码的条件,构造了有限链环上一类自由的1-生成元多元扭转码。基于概率方法和中国剩余定理理论,讨论了这类码的渐近码率和相对距离。结果表明,有限链环上的这类1-生成元多元扭转码是渐近优的。
  • [1] AYDIN N and HALILOVIĆ A. A generalization of quasi-twisted codes: Multi-twisted codes[J]. Finite Fields and Their Applications, 2017, 45: 96–106. doi: 10.1016/j.ffa.2016.12.002.
    [2] SHARMA A, CHAUHAN V, and SINGH H. Multi-twisted codes over finite fields and their dual codes[J]. Finite Fields and Their Applications, 2018, 51: 270–297. doi: 10.1016/j.ffa.2018.01.012.
    [3] SHARMA A and CHAUHAN V. Skew multi-twisted codes over finite fields and their Galois duals[J]. Finite Fields and Their Applications, 2019, 59: 297–334. doi: 10.1016/j.ffa.2019.06.005.
    [4] CHAUHAN V, SHARMA A, SHARMA S, et al. Hamming weight distributions of multi-twisted codes over finite fields[J]. Designs, Codes and Cryptography, 2021, 89(8): 1787–1837. doi: 10.1007/s10623-021-00889-1.
    [5] CHAUHAN V and SHARMA A. A generalization of multi-twisted codes over finite fields, their Galois duals and type II codes[J]. Journal of Applied Mathematics and Computing, 2022, 68(2): 1413–1447. doi: 10.1007/s12190-021-01574-1.
    [6] MAHMOUDI S and SAMEI K. Every ${\mathbb{F}_q}$-linear code is equivalent to a multi-twisted code[J]. Advances in Mathematics of Communications, 2025, 19(2): 560–571. doi: 10.3934/amc.2024011.
    [7] MARTINEZ-PEREZ C and WILLEMS W. Is the class of cyclic codes asymptotically good?[J]. IEEE Transactions on Information Theory, 2006, 52(2): 696–700. doi: 10.1109/TIT.2005.862123.
    [8] FAN Yun and LIN Liren. Thresholds of random quasi-Abelian codes[J]. IEEE Transactions on Information Theory, 2015, 61(1): 82–90. doi: 10.1109/TIT.2014.2368138.
    [9] FAN Yun and LIU Hualu. Quasi-cyclic codes of index $1\frac{1}{3}$[J]. IEEE Transactions on Information Theory, 2016, 62(11): 6342–6347. doi: 10.1109/TIT.2016.2602842.
    [10] MI Jiafu and CAO Xiwang. Asymptotically good quasi-cyclic codes of fractional index[J]. Discrete Mathematics, 2018, 341(2): 308–314. doi: 10.1016/j.disc.2017.08.042.
    [11] GAO Jian and HOU Xiaotong. $ {\mathbb{Z}_4} $-double cyclic codes are asymptotically good[J]. IEEE Communications Letters, 2020, 24(8): 1593–1597. doi: 10.1109/LCOMM.2020.2992501.
    [12] ZHU Hongwei and SHI Minjia. Several classes of asymptotically good quasi-twisted codes with a low index[J]. Journal of Applied Mathematics and Computing, 2022, 68(2): 1227–1244. doi: 10.1007/s12190-021-01564-3.
    [13] SHARMA S and SHARMA A. Multi-twisted additive codes over finite fields are asymptotically good[J]. Cryptography and Communications, 2023, 15(1): 17–33. doi: 10.1007/s12095-022-00583-6.
    [14] SHARMA S and SHARMA A. Multi-twisted additive self-orthogonal and ACD codes are asymptotically good[J]. Finite Fields and Their Applications, 2024, 93: 102319. doi: 10.1016/j.ffa.2023.102319.
    [15] 姚婷, 唐永生, 许和乾. 渐近好的加性循环码的存在性[J]. 系统科学与数学, 2024, 44(12): 3779–3789. doi: 10.12341/jssms240011.

    YAO Ting, TANG Yongsheng, and XU Heqian. Asymptotically good additive cyclic codes exist[J]. Journal of Systems Science and Mathematical Sciences, 2024, 44(12): 3779–3789. doi: 10.12341/jssms240011.
    [16] GHOSH M, PATHAK S, and MAITY D. On $ {\mathbb{Z}_{{p^r}}}{\text{ }}{\mathbb{Z}_{{p^s}}}{\text{ }}{\mathbb{Z}_{{p^t}}}{\text{ }} $-additive cyclic codes exhibit asymptotically good properties[J]. Cryptography and Communications, 2024, 16(6): 1559–1580. doi: 10.1007/s12095-024-00737-8.
    [17] YADAV B P. $ {\mathbb{F}_p}RS $-additive cyclic codes are asymptotically good[J]. IEEE Access, 2024, 12: 194598–194608. doi: 10.1109/ACCESS.2024.3519440.
    [18] MENG Xiangrui, GAO Jian, and FU Fangwei. Asymptotically good generalized quasi-cyclic codes over finite chain rings[J]. Advances in Mathematics of Communications, 2025, 19(1): 36–48. doi: 10.3934/amc.2023034.
    [19] ZHANG Guanghui, LIN Liren, and LIU Xuemei. Asymptotically good LCD 2-quasi-abelian codes over finite fields[J]. Discrete Mathematics, 2025, 348(1): 114224. doi: 10.1016/j.disc.2024.114224.
    [20] NORTON G H and SĂLĂGEAN A. On the structure of linear and cyclic codes over a finite chain ring[J]. Applicable Algebra in Engineering, Communication and Computing, 2000, 10(6): 489–506. doi: 10.1007/PL00012382.
    [21] JITMAN S and UDOMKAVANICH P. The Gray image of codes over finite chain rings[J]. arXiv preprint arXiv: 0907.3397, 2009.
    [22] JITMAN S, LING S, and UDOMKAVANICH P. Skew constacyclic codes over finite chain rings[J]. Advances in Mathematics of Communications, 2012, 6(1): 39–63. doi: 10.3934/amc.2012.6.39.
    [23] FAN Yun and LIN Liren. Thresholds of random quasi-Abelian codes[J]. IEEE Transactions on Information Theory, 2015, 61(1): 82–90. doi: 10.1109/TIT.2014.2368138.
    [24] MITZENMACHER M and UPFAL E. Probability and Computing: Randomized Algorithms and Probabilistic Analysis[M]. New York: Cambridge University Press, 2005.
    [25] BAZZI L M J and MITTER S K. Some randomized code constructions from group actions[J]. IEEE Transactions on Information Theory, 2006, 52(7): 3210–3219. doi: 10.1109/TIT.2006.876244.
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  33
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-14
  • 修回日期:  2025-05-21
  • 网络出版日期:  2025-06-07

目录

    /

    返回文章
    返回