高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机辅助无线供电移动边缘计算系统的多目标优化

刘建华 李国华 刘佳嘉 涂晓光

刘建华, 李国华, 刘佳嘉, 涂晓光. 无人机辅助无线供电移动边缘计算系统的多目标优化[J]. 电子与信息学报. doi: 10.11999/JEIT250026
引用本文: 刘建华, 李国华, 刘佳嘉, 涂晓光. 无人机辅助无线供电移动边缘计算系统的多目标优化[J]. 电子与信息学报. doi: 10.11999/JEIT250026
LIU Jianhua, LI Guohua, LIU Jiajia, TU Xiaoguang. Multi-Objective Optimization of UAV-Assisted Wireless Power Transfer Mobile Edge Computing System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250026
Citation: LIU Jianhua, LI Guohua, LIU Jiajia, TU Xiaoguang. Multi-Objective Optimization of UAV-Assisted Wireless Power Transfer Mobile Edge Computing System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250026

无人机辅助无线供电移动边缘计算系统的多目标优化

doi: 10.11999/JEIT250026 cstr: 32379.14.JEIT250026
基金项目: 国家自然科学基金 (62406207),民航通用航空运行重点实验室(中国民航管理干部学院)(CAMICKFJJ-2024-03)
详细信息
    作者简介:

    刘建华:男,博士,研究方向为边缘计算、信息安全

    李国华:男,硕士生,研究方向为边缘计算

    刘佳嘉:女,硕士,研究方向为图像处理,云计算

    涂晓光:男,博士,研究方向为人工智能、深度学习、计算机视觉

    通讯作者:

    刘建华 jianhuacafuc13@cafuc.edu.cn

  • 中图分类号: TN919.5

Multi-Objective Optimization of UAV-Assisted Wireless Power Transfer Mobile Edge Computing System

Funds: The National Natural Science Foundation of China (62406207), The Civil Aviation General Aviation Operation Key Laboratory (China Civil Aviation Management Cadre College) (CAMICKFJJ-2024-03)
  • 摘要: 针对物联网设备计算能力有限、电池供电受限等问题导致的数据处理延迟与能量不足,该文提出一种改进的多目标深度确定性策略梯度算法,用于优化边缘计算系统中无人机资源的调度与分配。该方法将资源优化建模为一个多目标决策问题,综合考虑总数据速率、总收集能量、系统能耗和边缘计算传输时延4个关键指标进行联合优化。无人机采用“飞行-悬停-通信”协议,并在悬停阶段以全双工模式与物联网设备通信,同时考虑推进功耗与非线性能量收集模型。智能体通过环境交互学习最优调度策略,动态响应设备优先级与数据卸载需求,有效降低传输延迟与数据溢出风险。实验结果显示,所提算法在不同场景下均能实现四项性能指标的协同优化,尤其在总能量收集方面始终优于对比方案,验证了该方法在复杂环境下的适应性和有效性。
  • 图  1  UAV辅助无线供电协作移动边缘计算系统模型

    图  2  MODDPG算法框架

    图  3  不同策略下的优化目标

    图  4  不同策略下的优化结果

    图  5  不同策略下的优化目标

    图  6  不同策略下的优化结果

    图  7  不同策略下的优化目标

    1  MODDPG算法

     输入:权重向量$\omega = [{\omega _{\rm{dc}}},{\omega _{\rm{eh}}},{\omega _{\rm{ec}}},{\omega _\Delta },{\omega _{aux}}]$
     1: 初始化网络、经验回放缓冲区$ \mathcal{B} $,设置${\sigma ^2} = 2.0$,
     $ \varepsilon = 0.999\;9 $用于动作探索
     2: for episode :=1, 2, ···, M do
     3:  for step t :=1, 2, ···,T do
     4:   更新状态空间并观察当前状态${s_t}$
     5:   根据$ {a}_{t}{\text{~}}\mathcal{N}(\mu ({s}_{t}\mid {\theta }^{\mu }),\epsilon{\sigma }^{2}) $选择动作
     6:   执行动作${a_t}$,观察奖励${r_t}$,转移到下一个状态$ {s_{t + 1}} $
     7:   将经验元组$({s_t},{a_t},{r_t},{s_{t + 1}})$存储到经验回放缓冲区$ \mathcal{B} $中
     8:   if需要更新then
     9:    随机从经验回放缓冲区$ \mathcal{B} $中采样一个小批量数据
     10:    计算${y_i}$
         $ \left\{\begin{aligned}& {r}_{i}{\omega }^{\rm T},\qquad\qquad\quad 对于终止状态{s}_{i+1}\\ & {r}_{i}{\omega }^{{\mathrm{T}}}+\gamma {Q}^{\prime }({s}_{i+1},{\mu }^{\prime }({s}_{i+1},{\theta }^{{\mu }^{\prime }})|{\theta }^{{Q}^{\prime }}),其他\end{aligned} \right.$
     11:    通过最小化Critic网络损失更新Critic网络(39)
     12:    通过最大化Actor网络损失更新Actor网络(40)
     13:    更新目标网络:
             ${\theta ^{Q'}} \leftarrow \tau {\theta ^Q} + (1 - \tau ){\theta ^{Q'}}$       (41)
             ${\theta ^{\mu '}} \leftarrow \tau {\theta ^\mu } + (1 - \tau ){\theta ^{\mu '}}$       (42)
     14:    衰减动作随机性:${\sigma ^2} \leftarrow {\sigma ^2}\varepsilon $
     15:    end if
     16:   end for
     17: end for
    下载: 导出CSV

    表  1  仿真参数

    参数数值参数数值
    带宽$(B)$1 MHz参考信道功率增益$({\gamma _0})$–30 dB
    噪声功率$(\eta _n^2)$–90 dBm非视距链路的衰减系数$(\mu )$0.2
    路径损耗指数$(\tilde a)$2.3视距概率的参数$(a,b)$10, 0.6
    叶片轮廓功率$({P_0})$79.86诱导功率$({P_i})$88.63
    旋翼叶片的尖端速度$({U_{{\text{tip}}}})$120 m/s悬停时旋翼诱导的平均速度$({v_0})$4.03
    机身阻力系数$({d_0})$0.6空气密度$(\rho )$1.225 km/m3
    旋翼实度$(s)$0.05旋翼圆盘面积$(A)$0.503 m2
    最大直流输出功率$ ({P_{limit}}) $9.079 μW能量收集模型的参数$(c,d)$47083, 2.9 μW
    UAV的计算能力$({f_{{\text{UAV}}}})$1.2 GHz处理每bit所需的CPU周期数$(s)$1000 cycles/bit
    用户计算能力$({f_j})$0.6 GHz
    下载: 导出CSV

    表  2  网络参数

    参数数值参数数值
    Actor网络结构[400, 300]经验回放缓冲区大小8000
    Critic网络结构[400, 300]批处理大小64
    训练轮次1600初始探索方差2.0
    Actor学习率10–3最终探索方差0.1
    Critic学习率10–3软更新参数0.001
    奖励折扣因子0.9
    下载: 导出CSV
  • [1] 董裕民, 张静, 谢昌佐, 等. 云边端架构下边缘智能计算关键问题综述: 计算优化与计算卸载[J]. 电子与信息学报, 2024, 46(3): 765–776. doi: 10.11999/JEIT230390.

    DONG Yumin, ZHANG Jing, XIE Changzuo, et al. A survey of key issues in edge intelligent computing under cloud-edge-terminal architecture: Computing optimization and computing offloading[J]. Journal of Electronics & Information Technology, 2024, 46(3): 765–776. doi: 10.11999/JEIT230390.
    [2] RAEISI-VARZANEH M, DAKKAK O, HABBAL A, et al. Resource scheduling in edge computing: Architecture, taxonomy, open issues and future research directions[J]. IEEE Access, 2023, 11: 25329–25350. doi: 10.1109/ACCESS.2023.3256522.
    [3] LOUTFI S I, SHAYEA I, TURELI U, et al. An overview of mobility awareness with mobile edge computing over 6G network: Challenges and future research directions[J]. Results in Engineering, 2024, 23: 102601. doi: 10.1016/j.rineng.2024.102601.
    [4] KONG Linghe, TAN Jinlin, HUANG Junqin, et al. Edge-computing-driven internet of things: A survey[J]. ACM Computing Surveys, 2023, 55(8): 174. doi: 10.1145/3555308.
    [5] PRAUZEK M, KUCOVA T, KONECNY J, et al. IoT sensor challenges for geothermal energy installations monitoring: A survey[J]. Sensors, 2023, 23(12): 5577. doi: 10.3390/s23125577.
    [6] DIAO Xianbang, CAI Yueming, YU Baoquan, et al. Location and complex status update strategy optimization in UAV-assisted IoT[J]. IEEE Internet of Things Journal, 2023, 10(13): 11588–11604. doi: 10.1109/JIOT.2023.3244541.
    [7] BHAROT N, GHANGARE N, and VERMA P. Optimizing transfer efficiency in multi-cloud storage systems with edge and fog computing[C]. 2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON), USA, 2023: 1–6. doi: 10.1109/ONCON60463.2023.10431110.(查阅网上资料,未找到本条文献出版城市信息,请确认并补充).
    [8] MOLOUDIAN G, HOSSEINIFARD M, KUMAR S, et al. RF energy harvesting techniques for battery-less wireless sensing, industry 4.0, and internet of things: A review[J]. IEEE Sensors Journal, 2024, 24(5): 5732–5745. doi: 10.1109/JSEN.2024.3352402.
    [9] BAIDYA T, NABI A, and MOH S. Trajectory-aware offloading decision in UAV-aided edge computing: A comprehensive survey[J]. Sensors, 2024, 24(6): 1837. doi: 10.3390/s24061837.
    [10] LI Min, LI Hao, MA Pengfei, et al. Energy maximization for ground nodes in UAV-enabled wireless power transfer systems[J]. IEEE Internet of Things Journal, 2023, 10(19): 17096–17109. doi: 10.1109/JIOT.2023.3274549.
    [11] ROSABAL O M, LÓPEZ O L A, ALVES H, et al. Sustainable RF wireless energy transfer for massive IoT: Enablers and challenges[J]. IEEE Access, 2023, 11: 133979–133992. doi: 10.1109/ACCESS.2023.3337214.
    [12] GU Xiaohui and ZHANG Guo’an. A survey on UAV-assisted wireless communications: Recent advances and future trends[J]. Computer Communications, 2023, 208: 44–78. doi: 10.1016/j.comcom.2023.05.013.
    [13] DAI Minghui, HUANG Ning, WU Yuan, et al. Unmanned-aerial-vehicle-assisted wireless networks: Advancements, challenges, and solutions[J]. IEEE Internet of Things Journal, 2023, 10(5): 4117–4147. doi: 10.1109/JIOT.2022.3230786.
    [14] WANG Zemin, PING Jianmiao, FU Junwei, et al. Research on the design of power supply gateway and wireless power transmission based on edge computing[J]. International Journal of Distributed Systems and Technologies, 2024, 15(1): 1–18. doi: 10.4018/IJDST.340941.
    [15] LU Weidang, XU Xiaohan, YE Qibin, et al. Power optimisation in UAV‐assisted wireless powered cooperative mobile edge computing systems[J]. IET Communications, 2020, 14(15): 2516–2523. doi: 10.1049/iet-com.2019.1063.
    [16] LI Qian, SHI Liqin, ZHANG Zhongjun, et al. Resource allocation in UAV-enabled wireless-powered MEC networks with hybrid passive and active communications[J]. IEEE Internet of Things Journal, 2023, 10(3): 2574–2588. doi: 10.1109/JIOT.2022.3214539.
    [17] WANG Xinran, WU Peng, HU Yulin, et al. Joint trajectories and resource allocation design for multi-UAV-assisted wireless power transfer with nonlinear energy harvesting[J]. Drones, 2023, 7(6): 354. doi: 10.3390/drones7060354.
    [18] GOU Xiaogang, SUN Zhaojie, and HUANG Kaiyuan. UAV-aided dual-user wireless power transfer: 3D trajectory design and energy optimization[J]. Sensors, 2023, 23(6): 2994. doi: 10.3390/s23062994.
    [19] LI Bin, LIU Wenshuai, XIE Wancheng, et al. Energy-efficient task offloading and trajectory planning in UAV-enabled mobile edge computing networks[J]. Computer Networks, 2023, 234: 109940. doi: 10.1016/j.comnet.2023.109940.
    [20] NGUYEN G H, NGUYEN A N, LE H H, et al. Energy harvesting and computation offloading for UAV-assisted MEC with NOMA in IoT network[M]. SHARMA H, SHRIVASTAVA V, TRIPATHI A K, et al. Communication and Intelligent Systems. Singapore, Singapore: Springer, 2024: 381–392. doi: 10.1007/978-981-97-2082-8_27.
    [21] KIM J, HONG E, JUNG J, et al. Energy minimization in reconfigurable intelligent surface-assisted unmanned aerial vehicle-enabled wireless powered mobile edge computing systems with rate-splitting multiple access[J]. Drones, 2023, 7(12): 688. doi: 10.3390/drones7120688.
    [22] LAKEW D S, TRAN A T, MASOOD A, et al. A review on AI-driven aerial access networks: Challenges and open research issues[C]. 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Bali, Indonesia, 2023: 718–723. doi: 10.1109/ICAIIC57133.2023.10067056.
    [23] ADIL M, SONG Houbing, MASTORAKIS S, et al. UAV-assisted IoT applications, cybersecurity threats, AI-enabled solutions, open challenges with future research directions[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(4): 4583–4605. doi: 10.1109/TIV.2023.3309548.
    [24] BAI Yu, ZHAO Hui, ZHANG Xin, et al. Toward autonomous multi-UAV wireless network: A survey of reinforcement learning-based approaches[J]. IEEE Communications Surveys & Tutorials, 2023, 25(4): 3038–3067. doi: 10.1109/COMST.2023.3323344.
    [25] FRATTOLILLO F, BRUNORI D, and IOCCHI L. Scalable and cooperative deep reinforcement learning approaches for multi-UAV systems: A systematic review[J]. Drones, 2023, 7(4): 236. doi: 10.3390/drones7040236.
    [26] AMODU O A, JARRAY C, MAHMOOD R A R, et al. Deep reinforcement learning for AoI minimization in UAV-aided data collection for WSN and IoT applications: A survey[J]. IEEE Access, 2024, 12: 108000–108040. doi: 10.1109/ACCESS.2024.3425497.
    [27] AHMAD S, ZHANG Jinling, NAUMAN A, et al. Deep-EERA: DRL-based energy-efficient resource allocation in UAV-empowered beyond 5G networks[J]. Tsinghua Science and Technology, 2025, 30(1): 418–432. doi: 10.26599/TST.2024.9010071.
    [28] LIN Na, FAN Yanbo, ZHAO Liang, et al. GREEN: A global energy efficiency maximization strategy for multi-UAV enabled communication systems[J]. IEEE Transactions on Mobile Computing, 2023, 22(12): 7104–7120. doi: 10.1109/TMC.2022.3207791.
    [29] HOANG L T, NGUYEN C T, and PHAM A T. Deep reinforcement learning-based online resource management for UAV-assisted edge computing with dual connectivity[J]. IEEE/ACM Transactions on Networking, 2023, 31(6): 2761–2776. doi: 10.1109/TNET.2023.3263538.
    [30] ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
    [31] KHALID R, SHAH Z, NAEEM M, et al. Computational efficiency maximization for UAV-assisted MEC networks with energy harvesting in disaster scenarios[J]. IEEE Internet of Things Journal, 2024, 11(5): 9004–9018. doi: 10.1109/JIOT.2023.3322001.
    [32] BEN HALIMA N. Non orthogonal multiple access (NOMA) using a nonlinear energy harvesting model[J]. Wireless Personal Communications, 2024, 135(4): 2165–2175. doi: 10.1007/s11277-024-11129-9.
    [33] WANG Yunpeng, FANG Weiwei, DING Yi, et al. Computation offloading optimization for UAV-assisted mobile edge computing: A deep deterministic policy gradient approach[J]. Wireless Networks, 2021, 27(4): 2991–3006. doi: 10.1007/s11276-021-02632-z.
    [34] XU Bin, KUANG Zhufang, GAO Jie, et al. Joint offloading decision and trajectory design for UAV-enabled edge computing with task dependency[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5043–5055. doi: 10.1109/TWC.2022.3231408.
    [35] HICKLING T, ZENATI A, AOUF N, et al. Explainability in deep reinforcement learning: A review into current methods and applications[J]. ACM Computing Surveys, 2024, 56(5): 125. doi: 10.1145/3623377.
    [36] HUANG Hao, CHAI Zhengyi, SUN Baoshan, et al. Multiobjective deep reinforcement learning for computation offloading and trajectory control in UAV-base-station-assisted MEC[J]. IEEE Internet of Things Journal, 2024, 11(19): 31805–31821. doi: 10.1109/JIOT.2024.3420884.
    [37] SUMIEA E H, ABDULKADIR S J, ALHUSSIAN H S, et al. Deep deterministic policy gradient algorithm: A systematic review[J]. Heliyon, 2024, 10(9): e30697. doi: 10.1016/j.heliyon.2024.e30697.
    [38] MIAO Jiansong, BAI Shanling, MUMTAZ S, et al. Utility-oriented optimization for video streaming in UAV-aided MEC network: A DRL approach[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(2): 878–889. doi: 10.1109/TGCN.2024.3352173.
    [39] PARK J, LEE H, EOM S, et al. UAV-aided wireless powered communication networks: Trajectory optimization and resource allocation for minimum throughput maximization[J]. IEEE Access, 2019, 7: 134978–134991. doi: 10.1109/ACCESS.2019.2941278.
    [40] YU Yu, TANG Jie, HUANG Jiayi, et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm[J]. IEEE Transactions on Communications, 2021, 69(9): 6361–6374. doi: 10.1109/TCOMM.2021.3089476.
    [41] AUNG P S, KANG S M, and HONG C S. Proximal policy optimization for energy-efficient MEC systems with STAR-RIS assistance[C]. 2024 International Conference on Information Networking (ICOIN), Ho Chi Minh City, Vietnam, 2024: 239–244. doi: 10.1109/ICOIN59985.2024.10572179.
    [42] ZHAO Liang, YAO Yujun, GUO Jianmeng, et al. Collaborative computation offloading and wireless charging scheduling in multi-UAV-assisted MEC networks: A TD3-based approach[J]. Computer Networks, 2024, 251: 110615. doi: 10.1016/j.comnet.2024.110615.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  29
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-07-22
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回