高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低空混合障碍下无人机协同多智能体航迹规划

冯斯梦 张云弈 刘凯 李宝龙 董超 张磊 吴启晖

冯斯梦, 张云弈, 刘凯, 李宝龙, 董超, 张磊, 吴启晖. 低空混合障碍下无人机协同多智能体航迹规划[J]. 电子与信息学报. doi: 10.11999/JEIT250012
引用本文: 冯斯梦, 张云弈, 刘凯, 李宝龙, 董超, 张磊, 吴启晖. 低空混合障碍下无人机协同多智能体航迹规划[J]. 电子与信息学报. doi: 10.11999/JEIT250012
FENG Simeng, ZHANG Yunyi, LIU Kai, LI Baolong, DONG Chao, ZHANG Lei, WU Qihui. Collaborative Multi-agent Trajectory Optimization for Unmanned Aerial Vehicles Under Low-altitude Mixed-obstacle Airspace[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250012
Citation: FENG Simeng, ZHANG Yunyi, LIU Kai, LI Baolong, DONG Chao, ZHANG Lei, WU Qihui. Collaborative Multi-agent Trajectory Optimization for Unmanned Aerial Vehicles Under Low-altitude Mixed-obstacle Airspace[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250012

低空混合障碍下无人机协同多智能体航迹规划

doi: 10.11999/JEIT250012
基金项目: 江苏省基础研究计划自然科学基金前沿引领技术基础研究专项(BK20222013),国家自然科学基金(62471223, 62201275),江苏省产业前瞻与关键核心技术重点项目(BE2021013-4)
详细信息
    作者简介:

    冯斯梦:女,副研究员,研究方向天地一体智能信息网络、低空智联网、无线光通信等

    张云弈:男,硕士生,研究方向无人机通信,低空智联网无人机航迹规划等

    刘凯:男,硕士生,研究方向 无人机公平性通信,多无人机协同等

    李宝龙:男,副教授,研究方向物联网、无线光通信、可见光通信等

    董超:男,教授,研究方向无人机协同智能应用、边缘网络智能等

    张磊:男,教授,研究方向无人机自组网、嵌入式系统与边缘计算等

    吴启晖:男,教授,研究方向天地一体智能信息网络、低空智联网、电磁空间频谱认知智能管控等

    通讯作者:

    冯斯梦 simeng-feng@nuaa.edu.cn

  • 中图分类号: TN929.5

Collaborative Multi-agent Trajectory Optimization for Unmanned Aerial Vehicles Under Low-altitude Mixed-obstacle Airspace

Funds: Jiangsu Province Basic Research Program Natural Science Foundation Leading Technology Basic Research Special Project (BK20222013), The National Natural Science Foundation of China (62471223,62201275), Jiangsu Province Industrial Outlook and Key Core Technology Key Project (BE2021013-4)
  • 摘要: 在低空智联网中,随着用户数量的急剧增加与空域环境的日益复杂,无人机(UAVs)搭载活动基站为多用户提供通信服务时难以兼顾数据传输性能与飞行安全。因此,该文创新性构建了基于碰撞概率地图避障的无人机避障通信系统模型,为解决低空混合障碍下最大化无人机通信能效的问题,提出了用户调度优化的多智能体深度确定性策略梯度(MADDPG)算法,实现了多机协同航迹规划。仿真分析表明,该文所提策略在混合障碍物空域中可有效提升无人机系统能效的同时,平均碰撞概率相比传统避障方法降低了约8倍。
  • 图  1  模型环境示意图

    图  2  障碍单元碰撞概率平面示意图

    图  3  航迹仿真图

    图  4  算法有效性仿真图

    图  5  无人机避障性能仿真图

    图  6  多无人机通信性能仿真图

    1  用户调度优化

     输入:${O_{l,t}},U$
     (1)以$i$遍历${\mathcal{L}}$:
     (2) 随机选择${O_{i,t}}$作为聚类中心
     (3) 以$d_{i,l,t}^{ - 1}$作为概率选择最大概率${O_{j,t}}$作为聚类中心
     (4) 重复直至$U$个聚类中心被确定
     (5) 当聚类中心发生变化时重复:
     (6)  将${O_{l,t}}(l = 1,2,\cdots,L)$归类到距离最近聚类中心的类中
     (7)  以类中均值作为新聚类中心
     (8) 对比聚类中心与预设方向$ {O_{u0}} $并以距离远近分配无人机服
       务聚类中心对应用户
     (9) 以${d_\rho }$作为判据将距离${d_{u,l,t}}$更大的${O_{l,t}}$的${\alpha _{u,l,t}}$置0
     输出:${\alpha _{u,l,t}}$
    下载: 导出CSV

    2  多智能体深度确定性策略梯度算法

     输入:$ S,A,R,{\mathcal{L}} $
     (1)初始化Actor-Critic网络参数
     (2)重复更新直到达到循环次数上限:
     (3) 从经验池随机取一组$ {S_t},{A_t},{R_t},{S_{t + 1}} $输入
     (4) 通过将$ {S_{t + 1}} $输入Actor网络得到预计动作$ \hat a $
     (5) 输入$ \hat a,{S_{t + 1}} $ 通过Critic网络得到下一状态的状态价值函数
       $ {Q_{{\text{next}}}}(s) $并计算当前状态$ {S_t} $的状态价值函数估计值$ \hat y $
     (6) 通过$ \hat y $计算$ L(\varepsilon ) $更新Critic网络参数
     (7) 通过将$ {S_t} $输入Actor网络得到预计动作$ a' $
     (8) 输入$ a',{S_t} $ 通过Critic网络得到下一状态的状态价值函数$ y' $
     (9) 计算平均价值$ J(\varepsilon ) $更新Actor网络参数
     (10)根据训练得到的网络输入初始状态、动作得到最优策略$ {\pi _*} $
     输出:$ {\pi _*} $
    下载: 导出CSV

    表  1  仿真参数

    参数 数值 参数 数值
    $ [{O_x},{O_y},{O_z}]({\text{m}}) $ [200,200,200] ${d_0}$ 0.6
    ${\eta _{{\text{LoS}}}}$ 1.173 $\rho $(kg/m3) 1.225
    ${\eta _{{\text{NLoS}}}}$ 9.974 ${p_{\text{s}}}$ 0.05
    ${\alpha _0}$ 0.11 $A$(m2) 0.503
    ${\beta _0}$ 12.08 $ {d_{\rho}} $(m) 3
    $ {z_0} $(m) 4 ${\text{b}}$ 1.4
    ${{\text{p}}_{\text{0}}}$ 79.856 $ \zeta $ 0.6
    ${{\text{p}}_{\text{1}}}$ 0.15496 $ \tau $ 0.8
    ${U_{{\text{tip}}}}$(m/s) 120 $ {{\alpha}_{\text{p}}} $ 0.4
    下载: 导出CSV

    表  2  航迹仿真飞行距离表 (m)

    \ 本文算法航迹长度$ T $ 安全半径算法航迹长度$ T $
    UAV1 100 112
    UAV2 80 88
    UAV3 84 108
    下载: 导出CSV
  • [1] 樊邦奎, 李云, 张瑞雨. 浅析低空智联网与无人机产业应用[J]. 地理科学进展, 2021, 40(9): 1441–1450. doi: 10.18306/dlkxjz.2021.09.001.

    FAN Bangkui, LI Yun, and ZHANG Ruiyu. Initial analysis of low-altitude internet of intelligences (IOI) and the applications of unmanned aerial vehicle industry[J]. Progress in Geography, 2021, 40(9): 1441–1450. doi: 10.18306/dlkxjz.2021.09.001.
    [2] REDDY MADDIKUNTA P K, HAKAK S, ALAZAB M, et al. Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges[J]. IEEE Sensors Journal, 2021, 21(16): 17608–17619. doi: 10.1109/JSEN.2021.3049471.
    [3] ZHU Pengfei, WEN Longyin, DU Dawei, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380–7399. doi: 10.1109/TPAMI.2021.3119563.
    [4] WU Qingqing, XU Jie, ZENG Yong, et al. A comprehensive overview on 5G-and-beyond networks with UAVs: From communications to sensing and intelligence[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 2912–2945. doi: 10.1109/JSAC.2021.3088681.
    [5] SWINNEY C J and WOODS J C. A review of security incidents and defence techniques relating to the malicious use of small unmanned aerial systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2022, 37(5): 14–28. doi: 10.1109/MAES.2022.3151308.
    [6] XU Chenchen, LIAO Xiaohan, TAN Junming, et al. Recent research progress of unmanned aerial vehicle regulation policies and technologies in urban low altitude[J]. IEEE Access, 2020, 8: 74175–74194. doi: 10.1109/ACCESS.2020.2987622.
    [7] SINGLA A, PADAKANDLA S, and BHATNAGAR S. Memory-based deep reinforcement learning for obstacle avoidance in UAV with limited environment knowledge[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 107–118. doi: 10.1109/TITS.2019.2954952.
    [8] LINDQVIST B, MANSOURI S S, AGHA-MOHAMMADI A A, et al. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6001–6008. doi: 10.1109/LRA.2020.3010730.
    [9] 李琦, 甘旭升, 孙静娟, 等. 军航无人机与民航航班侧向碰撞风险评估[J]. 北京航空航天大学学报, 2021, 47(4): 724–730. doi: 10.13700/j.bh.1001-5965.2020.0030.

    LI Qi, GAN Xusheng, SUN Jingjuan, et al. Risk assessment of lateral collision between military UAV and civil aviation flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 724–730. doi: 10.13700/j.bh.1001-5965.2020.0030.
    [10] 向征, 何雨阳, 全志伟. 流量拥堵空域内一种基于Q-Learning算法的改航路径规划[J]. 科学技术与工程, 2022, 22(32): 14494–14501. doi: 10.3969/j.issn.1671-1815.2022.32.053.

    XIANG Zheng, HE Yuyang, and QUAN Zhiwei. A rerouting path planning based on Q-Learning algorithm in traffic congestion airspace[J]. Science Technology and Engineering, 2022, 22(32): 14494–14501. doi: 10.3969/j.issn.1671-1815.2022.32.053.
    [11] FENG Jianxin, ZHANG Jingze, ZHANG Geng, et al. UAV dynamic path planning based on obstacle position prediction in an unknown environment[J]. IEEE Access, 2021, 9: 154679–154691. doi: 10.1109/ACCESS.2021.3128295.
    [12] LI Liang, HU Jiawei, TANG Xinke, et al. Autonomous obstacle avoidance and communication capacity optimization for UAV-assisted VLC systems[C]. 2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM), Wuhan, China, 2023: 1–4. doi: 10.1109/ACP/POEM59049.2023.10369190.
    [13] LI Bing, ZHAO Shengjie, ZHANG Rongqing, et al. Full-duplex UAV relaying for multiple user pairs[J]. IEEE Internet of Things Journal, 2021, 8(6): 4657–4667. doi: 10.1109/JIOT.2020.3027621.
    [14] ZHOU Xiaobo, YAN Shihao, HU Jinsong, et al. Joint optimization of a UAV's trajectory and transmit power for covert communications[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4276–4290. doi: 10.1109/TSP.2019.2928949.
    [15] YIN Sixing and YU F R. Resource allocation and trajectory design in UAV-aided cellular networks based on multiagent reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(4): 2933–2943. doi: 10.1109/JIOT.2021.3094651.
    [16] ZHOU Xiaobo, WU Qingqing, YAN Shihao, et al. UAV-enabled secure communications: Joint trajectory and transmit power optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4069–4073. doi: 10.1109/TVT.2019.2900157.
    [17] DO D T, NGUYEN T T T, LE C B, et al. UAV relaying enabled NOMA network with hybrid duplexing and multiple antennas[J]. IEEE Access, 2020, 8: 186993–187007. doi: 10.1109/ACCESS.2020.3030221.
    [18] 谭国平, 易文雄, 周思源, 等. 无人机辅助MEC车辆任务卸载与功率控制近端策略优化算法[J]. 电子与信息学报, 2024, 46(6): 2361–2371. doi: 10.11999/JEIT230770.

    TAN Guoping, YI Wenxiong, ZHOU Siyuan, et al. Proximal policy optimization algorithm for UAV-assisted MEC vehicle task offloading and power control[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2361–2371. doi: 10.11999/JEIT230770.
    [19] 赵楠, 黄香港, 邓娜, 等. 无人机高能效立体覆盖中轨迹与资源优化[J]. 电子与信息学报, 2024, 46(9): 3553–3562. doi: 10.11999/JEIT240151.

    ZHAO Nan, HUANG Xianggang, DENG Na, et al. Trajectory and resource optimization in energy-efficient 3D coverage of unmanned aerial vehicle[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3553–3562. doi: 10.11999/JEIT240151.
    [20] ZHAO Jingjing, YU Lanchenhui, CAI Kaiquan, et al. RIS-aided ground-aerial NOMA communications: A distributionally robust DRL approach[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(4): 1287–1301. doi: 10.1109/JSAC.2022.3143230.
    [21] REN Pengfei, WANG Jingjing, TONG Ziheng, et al. Federated learning via nonorthogonal multiple access for UAV-assisted internet of things[J]. IEEE Internet of Things Journal, 2024, 11(17): 27994–28006. doi: 10.1109/JIOT.2024.3413780.
    [22] CHEN Shijia, DU Pengfei, LIU Ziyue, et al. Energy-efficient trajectory design and computing offloading in UAV-aided IoT networks[C]. 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Hangzhou, China, 2024: 1–6. doi: 10.1109/ICCCWorkshops62562.2024.10693739.
    [23] ZENG Fanzi, HU Zhenzhen, XIAO Zhu, et al. Resource allocation and trajectory optimization for QoE provisioning in energy-efficient UAV-enabled wireless networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7634–7647. doi: 10.1109/TVT.2020.2986776.
    [24] YANG Zhaohui, XU Wei, and SHIKH-BAHAEI M. Energy efficient UAV communication with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1913–1927. doi: 10.1109/TVT.2019.2961993.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  45
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 修回日期:  2025-04-25
  • 网络出版日期:  2025-04-29

目录

    /

    返回文章
    返回