高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向高密度车间通信的能量特征图谱资源分配算法

邱恭安 刘永生 章国安 刘敏

邱恭安, 刘永生, 章国安, 刘敏. 面向高密度车间通信的能量特征图谱资源分配算法[J]. 电子与信息学报, 2025, 47(8): 2642-2651. doi: 10.11999/JEIT250004
引用本文: 邱恭安, 刘永生, 章国安, 刘敏. 面向高密度车间通信的能量特征图谱资源分配算法[J]. 电子与信息学报, 2025, 47(8): 2642-2651. doi: 10.11999/JEIT250004
QIU Gongan, LIU Yongsheng, ZHANG Guoan, LIU Min. Energy Characteristic Map Based Resource Allocation Algorithm for High-density V2V Communications[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2642-2651. doi: 10.11999/JEIT250004
Citation: QIU Gongan, LIU Yongsheng, ZHANG Guoan, LIU Min. Energy Characteristic Map Based Resource Allocation Algorithm for High-density V2V Communications[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2642-2651. doi: 10.11999/JEIT250004

面向高密度车间通信的能量特征图谱资源分配算法

doi: 10.11999/JEIT250004 cstr: 32379.14.JEIT250004
基金项目: 国家自然科学基金(62471258)
详细信息
    作者简介:

    邱恭安:男,教授,研究方向为智能通信理论、广域车联网通信技术

    刘永生:男,硕士生,研究方向为人工智能技术

    章国安:男,教授,研究方向为数字孪生和车联网通信理论

    刘敏:男,副教授,研究方向为无线智能通信理论与技术

    通讯作者:

    刘敏 liuming@ntu.edu.cn

  • 中图分类号: TN929.5

Energy Characteristic Map Based Resource Allocation Algorithm for High-density V2V Communications

Funds: The National Natural Science Foundation of China (62471258)
  • 摘要: 车联网拓扑的动态性和资源分配的随机性增大了竞争接入相同资源的碰撞概率,降低了频谱资源效率。该文基于高密度车辆运动位置的邻接稳定性,提出了应用深度强化学习算法的能量特征图谱资源分配算法。首先,应用资源感知过程测量值计算候选资源块的时隙接收信号强度指数和子载波信干噪比值,构建候选资源库的时频能量特征图谱。随后,将能量特征图谱输入构建的两层深度神经网络(DNN),以系统吞吐量为奖励函数训练DNN权值系数矩阵,建立匹配车辆运动状态的双DQN智能体模型,并存储于车载用户终端(VUE)。当车间通信请求分配资源建立通信链路时,VUE将感知过程计算的接收信号强度指数和信干噪比值输入存储的主DQN模型,根据训练后的DNN权值系数矩阵为车间通信选择高质量资源。应用离散时间马尔可夫链推导了资源接入碰撞概率、链路失效率与能量特征指数间的表达式。在高密度车间通信中,所提出的算法提高了交通安全消息传播可靠性和频谱效率,降低了端到端传播时延。在车辆密度不超过160 veh/km时,提出算法的消息分组正确接收率超过95%、时延低于4 ms,有效资源利用率高于0.6,满足编队行驶等车联网应用的性能要求。
  • 图  1  密集交通应用场景

    图  2  能量特征图谱模型

    图  3  V2V通信的DRL模型

    图  4  DNN网络

    图  5  V2V通信DTMC分析模型

    图  6  ECM算法PRR与车辆密度关系曲线

    图  7  ECM算法TD与车辆密度关系曲线

    图  8  学习率和折扣因子对PRR影响曲线

    图  9  学习率和折扣因子对TD影响曲线

    图  10  不同算法的PRR与车辆密度关系曲线

    图  11  不同算法的TD与车辆密度关系曲线

    图  12  不同算法的RU与车辆密度关系曲线

    表  1  仿真参数

    参数参数值
    信道带宽(MHz)10
    消息分组大小(Byte)300
    资源预留间隔(s)0.1
    资源保留概率0.4
    子载波间隔(kHz)15
    MCS11
    信道传播模型WINNER+B1
    学习率α0.01
    折扣因子γ0.9
    小批量经验样本数目64
    下载: 导出CSV
  • [1] GU Bo, CHEN Weixiang, ALAZAB M, et al. Multiagent reinforcement learning-based semi-persistent scheduling scheme in C-V2X mode 4[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 12044–12056. doi: 10.1109/TVT.2022.3189019.
    [2] SEIFHASHEMI F, HAJRASOULIHA A, and GHAHFAROKHI B S. Resource-aware multi-hop routing protocol for unicast cellular V2V communications[J]. IEEE Access, 2025, 13: 6584–6593. doi: 10.1109/ACCESS.2025.3526697.
    [3] GARCIA M H C, MOLINA-GALAN A, BOBAN M, et al. A tutorial on 5G NR V2X communications[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1972–2026. doi: 10.1109/COMST.2021.3057017.
    [4] 王巨震, 江昊, 陈琪美, 等. C-V2X资源分配方法研究综述[J]. 太赫兹科学与电子信息学报, 2022, 20(1): 1–7. doi: 10.11805/tkyda2021145.

    WANG Juzhen, JIANG Hao, CHEN Qimei, et al. Summary of research on C-V2X resource allocation method[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(1): 1–7. doi: 10.11805/tkyda2021145.
    [5] JEON Y and KIM H. An explicit reservation-augmented resource allocation scheme for C-V2X sidelink mode 4[J]. IEEE Access, 2020, 8: 147241–147255. doi: 10.1109/ACCESS.2020.3015549.
    [6] 李一兵, 王宁馨, 吕威. 蜂窝车联网中基于服务异构性的V2V通信资源分配算法研究[J]. 电子与信息学报, 2023, 45(1): 235–242. doi: 10.11999/JEIT211160.

    LI Yibing, WANG Ningxin, and LÜ Wei. Research on resource allocation algorithm based on service heterogeneity in V2V communication in C-V2X[J]. Journal of Electronics & Information Technology, 2023, 45(1): 235–242. doi: 10.11999/JEIT211160.
    [7] BANITALEBI N, AZMI P, MOKARI N, et al. Distributed learning-based resource allocation for self-organizing C-V2X communication in cellular networks[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1719–1736. doi: 10.1109/OJCOMS.2022.3211340.
    [8] PARVINI M, SCHULZ P, and FETTWEIS G. Resource allocation in V2X networks: From classical optimization to machine learning-based solutions[J]. IEEE Open Journal of the Communications Society, 2024, 5: 1958–1974. doi: 10.1109/OJCOMS.2024.3380509.
    [9] 陈发堂, 张若凡. 可重构智能反射面辅助的车联网资源分配算法研究[J]. 通信学报, 2023, 44(9): 70–78. doi: 10.11959/j.issn.1000−436x.2023145.

    CHEN Fatang and ZHANG Ruofan. Research on IoV resource allocation algorithm assisted by reconfigurable intelligent surface[J]. Journal on Communications, 2023, 44(9): 70–78. doi: 10.11959/j.issn.1000−436x.2023145.
    [10] 许耀华, 王慧平, 王贵竹, 等. 基于图着色和三维匹配的车联网资源分配算法[J]. 系统工程与电子技术, 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.

    XU Yaohua, WANG Huiping, WANG Guizhu, et al. Resource allocation algorithm for internet of vehicles based on graph coloring and three-dimensional matching[J]. Systems Engineering and Electronics, 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.
    [11] JI Baofeng, DONG Bingyi, LI Da, et al. Optimization of resource allocation for V2X security communication based on multi-agent reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2025, 74(2): 1849–1861. doi: 10.1109/TVT.2023.3340424.
    [12] JI Maoxin, WU Qiong, FAN Pingyi, et al. Graph neural networks and deep reinforcement learning-based resource allocation for V2X communications[J]. IEEE Internet of Things Journal, 2025, 12(4): 3613–3628. doi: 10.1109/JIOT.2024.3469547.
    [13] YACHEUR B Y, AHMED T, and MOSBAH M. Efficient DRL-based selection strategy in hybrid vehicular networks[J]. IEEE Transactions on Network and Service Management, 2023, 20(3): 2400–2411. doi: 10.1109/TNSM.2023.3300653.
    [14] ZHANG Minglong, DOU Yi, MAROJEVIC V, et al. FAQ: A fuzzy-logic-assisted Q-learning model for resource allocation in 6G V2X[J]. IEEE Internet of Things Journal, 2024, 11(2): 2472–2489. doi: 10.1109/JIOT.2023.3294279.
    [15] LI Pengfei and HUANG Xinlin. Cooperative spectrum sensing approach in C-V2X based on multi-agent reinforcement learning[C]. Proceedings of 2023 17th International Conference on Telecommunications, Graz, Austria, 2023: 1–6. doi: 10.1109/ConTEL58387.2023.10199063.
    [16] WANG Junhan, HE He, CHA J, et al. Multi-agent reinforcement learning for efficient resource allocation in Internet of Vehicles[J]. Electronics, 2025, 14(1): 192. doi: 10.3390/electronics14010192.
    [17] WIJESIRI G P N B A, HAAPOLA J, and SAMARASINGHE T. A discrete-time Markov chain based comparison of the MAC layer performance of C-V2X Mode 4 and IEEE 802.11p[J]. IEEE Transactions of Communications, 2021, 69(4): 2505–2517. doi: 10.1109/TCOMM.2020.3044340.
    [18] LAGEN S, WANUGA K, ELKOTBY H, et al. New radio physical layer abstraction for system-level simulations of 5G networks[C]. Proceedings of the ICC 2020-2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–7. doi: 10.1109/ICC40277.2020.9149444.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  167
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-06
  • 修回日期:  2025-04-15
  • 网络出版日期:  2025-05-08
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回