高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于个性化张量分解的高阶互补云API推荐方法

孙梦梦 刘啸威 陈文辉 申利民 尤殿龙 陈真

孙梦梦, 刘啸威, 陈文辉, 申利民, 尤殿龙, 陈真. 基于个性化张量分解的高阶互补云API推荐方法[J]. 电子与信息学报, 2025, 47(8): 2859-2871. doi: 10.11999/JEIT250003
引用本文: 孙梦梦, 刘啸威, 陈文辉, 申利民, 尤殿龙, 陈真. 基于个性化张量分解的高阶互补云API推荐方法[J]. 电子与信息学报, 2025, 47(8): 2859-2871. doi: 10.11999/JEIT250003
SUN Mengmeng, LIU Xiaowei, CHEN Wenhui, SHEN Limin, YOU Dianlong, CHEN Zhen. Personalized Tensor Decomposition Based High-order Complementary Cloud API Recommendation[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2859-2871. doi: 10.11999/JEIT250003
Citation: SUN Mengmeng, LIU Xiaowei, CHEN Wenhui, SHEN Limin, YOU Dianlong, CHEN Zhen. Personalized Tensor Decomposition Based High-order Complementary Cloud API Recommendation[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2859-2871. doi: 10.11999/JEIT250003

基于个性化张量分解的高阶互补云API推荐方法

doi: 10.11999/JEIT250003 cstr: 32379.14.JEIT250003
基金项目: 国家自然科学基金(62102348, 62276226),河北省自然科学基金(F2022203012), 河北省科技计划项目(236Z0103G, 236Z7725G),河北省创新能力提升计划项目(22567626H)
详细信息
    作者简介:

    孙梦梦:女,博士生,研究方向为云API推荐、数据挖掘等

    刘啸威:男,硕士生,研究方向为云API推荐、知识图谱等

    陈文辉:男,硕士生,研究方向为云API推荐、数据挖掘等

    申利民:男,教授,研究方向为柔性软件、协同计算、信息安全等

    尤殿龙:男,教授,主要研究方向为数据挖掘、特征选择和推荐系统等

    陈真:男,副教授,研究方向为服务计算、云计算等

    通讯作者:

    陈真 zhenchen@ysu.edu.cn

  • 11) https://github.com/kkfletch/API-Dataset 2) https://github.com/528Lab/CAData
  • 中图分类号: TN915; TP309

Personalized Tensor Decomposition Based High-order Complementary Cloud API Recommendation

Funds: The National Natural Science Foundation of China (62102348, 62276226), The National Natural Science Foundation of Hebei Province (F2022203012), The Science and Technology Program of Hebei (236Z0103G, 236Z7725G), The Innovation Capability Improvement Plan Project of Hebei Province (22567626H)
  • 摘要: 在万物互联的云时代,云应用程序编程接口(API)是数字经济建设和服务化软件开发的关键数字基础设施。然而,云API数量的持续增长给用户决策和推广带来挑战,设计有效的推荐方法成为亟待解决的重要问题。现有研究多利用调用偏好、搜索关键词或二者结合进行建模,主要解决为给定Mashup推荐合适云API的问题,未考虑开发者对个性化高阶互补云API的实际需求。该文提出一种基于个性化张量分解的高阶互补云API推荐方法(Personalized Tensor Decomposition based High-order Complementary cloud API Recommendation, PTDHCR)。首先,将Mashup与云API之间的调用关系,以及云API与云API之间的互补关系建模为三维张量,并利用RECAL张量分解技术对这两种关系进行共同学习,以挖掘云API之间的个性化非对称互补关系。然后,考虑到不同互补关系对推荐结果的影响程度不同,构建个性化高阶互补感知网络,充分利用Mashup、查询云API以及候选云API的多模态特征,动态计算Mashup对不同查询和候选云API之间互补关系的关注程度。在此基础上,将个性化互补关系拓展到高阶,得到候选云API与查询云API集合的整体个性化互补性。最后,利用两个真实云API数据集进行实验,结果表明,相较于传统方法,PTDHCR在挖掘个性化互补关系和推荐方面具有较大的优势。
  • 图  1  面向服务化软件开发的云API推荐问题示意

    图  2  PTDHCR的整体流程

    图  3  PTDHCR的整体框架

    图  4  不同互补阈值下的推荐指标变化

    图  5  PWA数据集下高阶互补感知方法的对比结果

    图  6  HGA数据集下高阶互补感知方法的对比结果

    图  7  个性化高阶互补云API推荐实例

    表  1  超参数设置

    数据集\参数 U的维度d 正则化参数λ 特征嵌入维度L 正负样本比r 学习率lr 训练批次bsize 训练步数steps
    PWA 64 0.001 128 3 0.0001 512 10000
    HGA 32 0.002 64 3 0.0001 512 20000
    下载: 导出CSV

    表  2  基于PWA数据集的方法比较结果

    方法 n=1 n=2 n=5 n=33 (最高阶)
    AUC RMSE HR@10 AUC RMSE HR@10 AUC RMSE HR@10 AUC RMSE HR@10
    Random - - 0.0179 - - 0.0235 - - 0.1052 - - 0.1986
    Popular-N - - 0.3423 - - 0.3496 - - 0.3517 - - 0.3702
    FM 0.7772 0.3656 0.3905 0.8442 0.3372 0.4221 0.8423 0.3312 0.4342 0.8422 0.3307 0.4202
    WDL 0.8096 0.3585 0.3958 0.8481 0.3353 0.4251 0.8551 0.3322 0.4473 0.8564 0.3332 0.4303
    AFM 0.8206 0.3407 0.4158 0.8481 0.3372 0.4232 0.8562 0.3353 0.4377 0.8571 0.3361 0.4307
    DCN 0.8190 0.3512 0.4086 0.8512 0.3350 0.4320 0.8565 0.3297 0.4392 0.8531 0.3397 0.4351
    xDeepFM 0.8162 0.3513 0.4024 0.8515 0.3316 0.4291 0.8640 0.3298 0.4493 0.8615 0.3298 0.4474
    AutoInt 0.8138 0.3526 0.3968 0.8514 0.3332 0.4265 0.8535 0.3317 0.4425 0.8620 0.3383 0.4504
    DCNv2 0.8295 0.3573 0.4162 0.8530 0.3342 0.4317 0.8652 0.3244 0.4524 0.8614 0.3259 0.4518
    EDCN 0.8066 0.3602 0.3954 0.8544 0.3294 0.4351 0.8644 0.3300 0.4520 0.8645 0.3274 0.4510
    FinalMLP 0.8392 0.3367 0.4166 0.8571 0.3321 0.4292 0.8637 0.3291 0.4480 0.8674 0.3261 0.4544
    PTDHCR 0.8402 0.3356 0.4204 0.8583 0.3271 0.4395 0.8778 0.3200 0.4680 0.8928 0.3172 0.5038
    提升 0.12% –0.33% 0.91% 0.14% –0.70% 1.01% 1.46% –1.36% 3.45% 2.93% –2.67% 10.87%
    下载: 导出CSV

    表  3  基于HGA数据集的方法比较结果

    方法 n=1 n=2 n=5 n=39 (最高阶)
    AUC RMSE HR@10 AUC RMSE HR@10 AUC RMSE HR@10 AUC RMSE HR@10
    Random - - 0.0125 - - 0.0176 - - 0.0182 - - 0.1025
    Popular-N - - 0.2014 - - 0.2078 - - 0.2142 - - 0.2259
    FM 0.8706 0.2376 0.3286 0.8711 0.2337 0.3415 0.8752 0.2306 0.3535 0.8702 0.2215 0.3532
    WDL 0.8748 0.2267 0.3482 0.8769 0.2209 0.3619 0.8771 0.2200 0.3685 0.8701 0.2159 0.3671
    AFM 0.8750 0.2269 0.3489 0.8762 0.2269 0.3603 0.8784 0.2262 0.3692 0.8715 0.2203 0.3686
    DCN 0.8729 0.2351 0.3369 0.8759 0.2235 0.3701 0.8811 0.2207 0.3712 0.8769 0.2164 0.3701
    xDeepFM 0.8759 0.2275 0.3554 0.8712 0.2248 0.3692 0.8802 0.2212 0.3702 0.8812 0.2201 0.3692
    AutoInt 0.8734 0.2307 0.3461 0.8693 0.2268 0.3732 0.8792 0.2207 0.3738 0.8732 0.2196 0.3731
    DCNv2 0.8745 0.2280 0.3472 0.8765 0.2265 0.3715 0.8796 0.2206 0.3721 0.8724 0.2156 0.3719
    EDCN 0.8749 0.2269 0.3479 0.8891 0.2207 0.3753 0.8812 0.2198 0.3738 0.8759 0.2185 0.3729
    FinalMLP 0.8752 0.2262 0.3569 0.8803 0.2209 0.3749 0.8816 0.2196 0.3742 0.8802 0.2162 0.3737
    PTDHCR 0.8803 0.2203 0.3627 0.8963 0.2121 0.3856 0.9012 0.2083 0.3918 0.9125 0.2001 0.4095
    提升 0.50% –2.61% 1.63% 0.81% –3.90% 2.74% 2.22% –5.15% 4.70% 3.67% –7.19% 9.58%
    下载: 导出CSV
  • [1] WU Di, ZHANG Peng, HE Yi, et al. A double-space and double-norm ensembled latent factor model for highly accurate web service QoS prediction[J]. IEEE Transactions on Services Computing, 2023, 16(2): 802–814. doi: 10.1109/TSC.2022.3178543.
    [2] KALLA D, SMITH N, KURAKU S, et al. Study and analysis of chat GPT and its impact on different fields of study[J]. International Journal of Innovative Science and Research Technology, 2023, 8(3): 827–833. doi: 10.5281/zenodo.10250455.
    [3] CHEN Zhen, BAO Taiyu, QI Wenchao, et al. Poisoning QoS-aware cloud API recommender system with generative adversarial network attack[J]. Expert Systems with Applications, 2024, 238: 121630. doi: 10.1016/j.eswa.2023.121630.
    [4] ZHANG Yiwen, WANG Kaibin, HE Qiang, et al. Covering-based web service quality prediction via neighborhood-aware matrix factorization[J]. IEEE Transactions on Services Computing, 2021, 14(5): 1333–1344. doi: 10.1109/TSC.2019.2891517.
    [5] NGUYEN M, YU Jian, NGUYEN T, et al. Attentional matrix factorization with context and co-invocation for service recommendation[J]. Expert Systems with Applications, 2021, 186: 115698. doi: 10.1016/j.eswa.2021.115698.
    [6] ALMARIMI N, OUNI A, BOUKTIF S, et al. Web service API recommendation for automated mashup creation using multi-objective evolutionary search[J]. Applied Soft Computing, 2019, 85: 105830. doi: 10.1016/j.asoc.2019.105830.
    [7] LI Hongchao, LIU Jianxun, CAO Buqing, et al. Integrating tag, topic, co-occurrence, and popularity to recommend web APIs for mashup creation[C]. Proceedings of 2017 IEEE International Conference on Services Computing, Honolulu, USA, 2017: 84–91. doi: 10.1109/SCC.2017.19.
    [8] WU Hao, DUAN Yunhao, YUE Kun, et al. Mashup-oriented web API recommendation via multi-model fusion and multi-task learning[J]. IEEE Transactions on Services Computing, 2022, 15(6): 3330–3343. doi: 10.1109/TSC.2021.3098756.
    [9] SANG Chunyan, DENG Xinyan, and LIAO Shigen. Mashup-oriented web API recommendation via full-text semantic mining of developer requirements[J]. IEEE Transactions on Services Computing, 2023, 16(4): 2755–2768. doi: 10.1109/TSC.2023.3245652.
    [10] HE Pengfei, QI Wenchao, LIU Xiaowei, et al. Seizing the long tail: Neural complementary recommendation for cloud API delivery[C]. Proceedings of 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles, Haikou, China, 2022: 1954–1961. doi: 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00283.
    [11] 陈真, 谢登辉, 王小龙, 等. 基于概率逻辑推理的高阶互补云API推荐方法[J]. 计算机学报, 2024, 47(8): 1922–1948. doi: 10.11897/SP.J.1016.2024.01922.

    CHEN Zhen, XIE Denghui, WANG Xiaolong, et al. Probabilistic logic reasoning for high-order complementary cloud API recommendation[J]. Chinese Journal of Computers, 2024, 47(8): 1922–1948. doi: 10.11897/SP.J.1016.2024.01922.
    [12] ENTEZARI N, PAPALEXAKIS E E, WANG Haixun, et al. Tensor-based complementary product recommendation[C]. Proceedings of 2021 IEEE International Conference on Big Data, Orlando, USA, 2021: 409–415. doi: 10.1109/BigData52589.2021.9671938.
    [13] BIBAS K, SHALOM O S, and JANNACH D. Semi-supervised adversarial learning for complementary item recommendation[C]. Proceedings of the ACM Web Conference 2023, Austin, USA, 2023: 1804–1812. doi: 10.1145/3543507.3583462.
    [14] ZHANG Yin, LU Haokai, NIU Wei, et al. Quality-aware neural complementary item recommendation[C]. Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, Canada, 2018: 77–85. doi: 10.1145/3240323.3240368.
    [15] HAO Junheng, ZHAO Tong, LI Jin, et al. P-companion: A principled framework for diversified complementary product recommendation[C]. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020: 2517–2524. doi: 10.1145/3340531.3412732.
    [16] YAN An, DONG Chaosheng, GAO Yan, et al. Personalized complementary product recommendation[C]. Proceedings of the Web Conference 2022, Lyon, France, 2022: 146–151. doi: 10.1145/3487553.3524222.
    [17] WANG Ke, ZHU Yanmin, ZANG Tianzi, et al. Review-enhanced hierarchical contrastive learning for recommendation[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 9107–9115. doi: 10.1609/AAAI.V38I8.28761.
    [18] LIU Xiaowei, SUN Mengmeng, CHEN Wenhui, et al. Complementarity analysis of cloud API ecosystems: An empirical study on ProgrammableWeb and Huawei AppGallery datasets[C]. Proceedings of 2024 IEEE International Conference on Web Services, Shenzhen, China, 2024: 364–370. doi: 10.1109/ICWS62655.2024.00058.
    [19] RENDLE S. Factorization machines[C]. Proceedings of 2010 IEEE International Conference on Data Mining, Sydney, Australia, 2010: 995–1000. doi: 10.1109/ICDM.2010.127.
    [20] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, USA, 2016: 7–10. doi: 10.1145/2988450.2988454.
    [21] XIAO Jun, YE Hao, HE Xiangnan, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks[C]. Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 3119–3124. doi: 10.24963/IJCAI.2017/435.
    [22] WANG Ruoxi, FU Bin, FU Gang, et al. Deep & cross network for ad click predictions[C]. Proceedings of the ADKDD’17, Halifax, Canada, 2017: 12. doi: 10.1145/3124749.3124754.
    [23] LIAN Jianxun, ZHOU Xiaohuan, ZHANG Fuzheng, et al. xDeepFM: Combining explicit and implicit feature interactions for recommender systems[C]. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 1754–1763. doi: 10.1145/3219819.3220023.
    [24] SONG Weiping, SHI Chence, XIAO Zhiping, et al. Autoint: Automatic feature interaction learning via self-attentive neural networks[C]. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 2019: 1161–1170. doi: 10.1145/3357384.3357925.
    [25] WANG Ruoxi, SHIVANNA R, CHENG D, et al. DCN V2: Improved deep & cross network and practical lessons for web-scale learning to rank systems[C]. Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 2021: 1785–1797. doi: 10.1145/3442381.3450078.
    [26] CHEN Bo, WANG Yichao, LIU Zhirong, et al. Enhancing explicit and implicit feature interactions via information sharing for parallel deep CTR models[C]. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Australia, 2021: 3757–3766. doi: 10.1145/3459637.3481915.
    [27] MAO Kelong, ZHU Jieming, SU Liangcai, et al. FinalMLP: An enhanced two-stream MLP model for CTR prediction[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 4552–4560. doi: 10.1609/AAAI.V37I4.25577.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  98
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-06
  • 修回日期:  2025-03-27
  • 网络出版日期:  2025-04-08
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回