高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

遥感图像中不确定性驱动的像素级对抗噪声检测方法

要旭东 郭雅萍 刘梦阳 孟钢 李阳 张浩鹏

要旭东, 郭雅萍, 刘梦阳, 孟钢, 李阳, 张浩鹏. 遥感图像中不确定性驱动的像素级对抗噪声检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT241157
引用本文: 要旭东, 郭雅萍, 刘梦阳, 孟钢, 李阳, 张浩鹏. 遥感图像中不确定性驱动的像素级对抗噪声检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT241157
YAO Xudong, GUO Yaping, LIU Mengyang, MENG Gang, LI Yang, ZHANG Haopeng. An Uncertainty-driven Pixel-level Adversarial Noise Detection Method for Remote Sensing Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241157
Citation: YAO Xudong, GUO Yaping, LIU Mengyang, MENG Gang, LI Yang, ZHANG Haopeng. An Uncertainty-driven Pixel-level Adversarial Noise Detection Method for Remote Sensing Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241157

遥感图像中不确定性驱动的像素级对抗噪声检测方法

doi: 10.11999/JEIT241157
基金项目: 国家自然科学基金(62271017)
详细信息
    作者简介:

    要旭东:男,博士生,研究方向为遥感图像超分辨率重建

    郭雅萍:女,工程师,研究方向为航天装备地面系统

    刘梦阳:男,硕士生,研究方向为遥感图像处理

    孟钢:男,高级工程师,研究方向为遥感图像智能处理

    李阳:男,研究实习员,研究方向为航天信息处理与应用

    张浩鹏:男,副教授,研究方向为遥感图像处理与解译、空间目标信息处理

    通讯作者:

    张浩鹏 zhanghaopeng@buaa.edu.cn

  • 中图分类号: TN911.73; TP751.1

An Uncertainty-driven Pixel-level Adversarial Noise Detection Method for Remote Sensing Images

Funds: The National Natural Science Foundation of China (62271017)
  • 摘要: 现有对抗防御策略大多针对特定攻击方式进行对抗样本判别,计算复杂度高、迁移性差,且无法实现噪声的像素级检测。对于大尺寸遥感图像,对抗噪声往往集中于局部关键地物区域。为此,该文结合对抗噪声高不确定性特征,面向遥感图像提出一种不确定性驱动的像素级对抗噪声检测方法。首先设计带蒙特卡罗批归一化的特征提取网络,通过多次前向传播生成蒙特卡罗样本,并将样本的均值和标准差分别作为输出图像和不确定性图。依据输出图像的均方误差判断其是否属于对抗样本,若属于则进一步结合不确定性图实现多种类型对抗噪声的像素级检测。在遥感数据集上的实验结果表明,该方法能够准确检测出对抗噪声,并在不同攻击方式下展现出强鲁棒性与良好的泛化性能。
  • 图  1  算法整体框架图

    图  2  加噪遥感地物、对抗噪声及对抗样本示意图

    图  3  两类样本的均方误差分布图

    图  4  不同噪声类型对抗样本及其不确定性图

    图  5  不同类型对抗噪声像素级检测结果

    表  1  所提方法在不同噪声类型对抗样本上的检测结果

    对抗样本
    生成方法
    准确率精确率召回率F1分数
    FGSM0.8740.9270.8120.866
    BIM0.8840.9510.8060.872
    DeepFool0.8810.9580.7900.866
    AdvGAN0.8770.9530.7990.870
    下载: 导出CSV

    表  2  不同对抗样本检测方法的在DeepFool上的检测结果

    对抗样本检测方法 准确率 精确率 召回率 F1分数
    MAD 0.842 0.875 0.798 0.835
    PACA 0.845 0.878 0.801 0.838
    E2E-Binary 0.864 0.947 0.772 0.851
    DSADF 0.885 0.980 0.786 0.872
    本文方法 0.881 0.958 0.790 0.866
    下载: 导出CSV

    表  3  不同类型对抗噪声像素级检测定量评价

    对抗样本
    生成方法
    准确率精确率召回率F1分数
    FGSM0.9310.8490.6100.710
    BIM0.9210.7810.6010.679
    DeepFool0.9130.6680.7250.696
    AdvGAN0.9720.9250.8710.898
    下载: 导出CSV
  • [1] 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148–166. doi: 10.11834/jrs.20210259.

    LI Shutao, LI Congyu, and KANG Xudong. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1): 148–166. doi: 10.11834/jrs.20210259.
    [2] 付琨, 卢宛萱, 刘小煜, 等. 遥感基础模型发展综述与未来设想[J]. 遥感学报, 2024, 28(7): 1667–1680. doi: 10.11834/jrs.20233313.

    FU Kun, LU Wanxuan, LIU Xiaoyu, et al. A comprehensive survey and assumption of remote sensing foundation modal[J]. National Remote Sensing Bulletin, 2024, 28(7): 1667–1680. doi: 10.11834/jrs.20233313.
    [3] WANG Yu, SHAO Zhenfeng, LU Tao, et al. Remote sensing image super-resolution via multiscale enhancement network[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 5000905. doi: 10.1109/LGRS.2023.3248069.
    [4] YAO Xudong, GUO Qing, and LI An. Cloud detection in optical remote sensing images with deep semi-supervised and active learning[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6006805. doi: 10.1109/LGRS.2023.3287537.
    [5] BANIECKI H and BIECEK P. Adversarial attacks and defenses in explainable artificial intelligence: A survey[J]. Information Fusion, 2024, 107: 102303. doi: 10.1016/j.inffus.2024.102303.
    [6] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014: 1–11.
    [7] GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–11.
    [8] LI Yanjie, LI Yiquan, DAI Xuelong, et al. Physical-world optical adversarial attacks on 3D face recognition[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 24699–24708. doi: 10.1109/CVPR52729.2023.02366.
    [9] CARRARA F, FALCHI F, AMATO G, et al. Detecting adversarial inputs by looking in the black box[J]. ERCIM News, 2019, 116: 16–17.
    [10] MA Xingjun, NIU Yuhao, GU Lin, et al. Understanding adversarial attacks on deep learning based medical image analysis systems[J]. Pattern Recognition, 2021, 110: 107332. doi: 10.1016/j.patcog.2020.107332.
    [11] 郭凯威, 杨奎武, 张万里, 等. 面向文本识别的对抗样本攻击综述[J]. 中国图象图形学报, 2024, 29(9): 2672–2691. doi: 10.11834/jig.230412.

    GUO Kaiwei, YANG Kuiwu, ZHANG Wanli, et al. A review of adversarial examples for optical character recognition[J]. Journal of Image and Graphics, 2024, 29(9): 2672–2691. doi: 10.11834/jig.230412.
    [12] XU Weilin, EVANS D, and QI Yanjun. Feature squeezing: Detecting adversarial examples in deep neural networks[C]. Network and Distributed Systems Security Symposium (NDSS), San Diego, USA, 2018. doi: 10.14722/ndss.2018.23198.
    [13] HENDRYCKS D and GIMPEL K. Early methods for detecting adversarial images[C]. 5th International Conference on Learning Representations, Toulon, France, 2016.
    [14] FEINMAN R, CURTIN R R, SHINTRE S, et al. Detecting adversarial samples from artifacts[EB/OL]. https://arxiv.org/abs/1703.00410, 2017. doi: 10.48550/arXiv.1703.00410.
    [15] LEE K, LEE K, LEE H, et al. A simple unified framework for detecting out-of-distribution samples and adversarial attacks[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 7167–7177.
    [16] CHEN Kejiang, CHEN Yuefeng, ZHOU Hang, et al. Adversarial examples detection beyond image space[C]. ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 3850–3854. doi: 10.1109/ICASSP39728.2021.9414008.
    [17] METZEN J H, GENEWEIN T, FISCHER V, et al. On detecting adversarial perturbations[C]. 5th International Conference on Learning Representations, Toulon, France, 2017: 1–12.
    [18] KENDALL A and GAL Y. What uncertainties do we need in Bayesian deep learning for computer vision?[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5580–5590.
    [19] MA Chenxi. Uncertainty-aware GAN for single image super resolution[C]. The 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 4071–4079. doi: 10.1609/aaai.v38i5.28201.
    [20] BUDDENKOTTE T, SANCHEZ L E, CRISPIN-ORTUZAR M, et al. Calibrating ensembles for scalable uncertainty quantification in deep learning-based medical image segmentation[J]. Computers in Biology and Medicine, 2023, 163: 107096. doi: 10.1016/j.compbiomed.2023.107096.
    [21] KURAKIN A, GOODFELLOW I J, and BENGIO S. Adversarial examples in the physical world[M]. YAMPOLSKIY R V. Artificial Intelligence Safety and Security. New York: Chapman and Hall/CRC, 2018: 99–112. doi: 10.1201/9781351251389.
    [22] MOOSAVI-DEZFOOLI S M, FAWZI A, and FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2574–2582. doi: 10.1109/CVPR.2016.282.
    [23] XIAO Chaowei, LI Bo, ZHU Junyan, et al. Generating adversarial examples with adversarial networks[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 3905–3911.
    [24] 刘帅威, 李智, 王国美, 等. 基于Transformer和GAN的对抗样本生成算法[J]. 计算机工程, 2024, 50(2): 180–187. doi: 10.19678/j.issn.1000-3428.0067077.

    LIU Shuaiwei, LI Zhi, WANG Guomei, et al. Adversarial example generation algorithm based on transformer and GAN[J]. Computer Engineering, 2024, 50(2): 180–187. doi: 10.19678/j.issn.1000-3428.0067077.
    [25] GONG Zhitao and WANG Wenlu. Adversarial and clean data are not twins[C]. The Sixth International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, Seattle, USA, 2023: 6. doi: 10.1145/3593078.3593935.
    [26] LU Yunfei, CHANG Chenxia, GAO Song, et al. Boosting adversarial example detection via local histogram equalization and spectral feature analysis[J]. The Visual Computer, 2024: 1–18. doi: 10.1007/s00371-024-03734-3.
    [27] BISHOP C M. Mixture density networks[R]. Birmingham, UK: Aston University, 1994.
    [28] DEVRIES T and TAYLOR G W. Learning confidence for out-of-distribution detection in neural networks[EB/OL]. https://arxiv.org/abs/1802.04865, 2018. doi: 10.48550/arXiv.1802.04865.
    [29] HERNÁNDEZ-LOBATO J M and ADAMS R P. Probabilistic backpropagation for scalable learning of Bayesian neural networks[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1861–1869.
    [30] GAL Y and GHAHRAMANI Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[C]. The 33nd International Conference on Machine Learning, New York, USA, 2016: 1050–1059.
    [31] KAR A and BISWAS P K. Fast Bayesian uncertainty estimation and reduction of batch normalized single image super-resolution network[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 4957–4966. doi: 10.1109/CVPR46437.2021.00492.
    [32] LIU Tao, CHENG Jun, and TAN Shan. Spectral Bayesian uncertainty for image super-resolution[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 18166–18175. doi: 10.1109/CVPR52729.2023.01742.
    [33] BELHASIN O, ROMANO Y, FREEDMAN D, et al. Principal uncertainty quantification with spatial correlation for image restoration problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 3321–3333. doi: 10.1109/TPAMI.2023.3343031.
    [34] IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456.
    [35] KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
    [36] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2014.
    [37] GHAHRAMANI Z. Probabilistic machine learning and artificial intelligence[J]. Nature, 2015, 521(7553): 452–459. doi: 10.1038/nature14541.
    [38] LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  59
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-31
  • 修回日期:  2025-04-13
  • 网络出版日期:  2025-05-10

目录

    /

    返回文章
    返回