System Architecture and Key Technologies of 6G Integrated Sensing, Communication, and Computing
-
摘要: 通感算一体化网络作为第六代移动通信系统的重要发展方向,融合了通信、感知和计算功能,为未来智能网络的高效协同提供了技术支撑。该文首先介绍了通感智能协同和云雾边算力协同技术,并结合区块链技术,研究了通感算一体化体系架构,提升了数据传输与存储的安全性。随后,深入分析了高精度感知与干扰管控方法,包括按需适配的高精度感知机制、双层优化频谱共享框架以及通感互干扰的优化策略。最后,围绕弹性接入与资源优化,探讨了人工智能驱动的资源分配框架和动态资源优化与调度策略,有效提升多维资源利用率和网络适应能力,满足未来高效、智能、安全的通感算一体化网络需求。Abstract:
Significance The communication–sensing–computing integrated network, a central direction in the development of Sixth-Generation (6G) mobile communication systems, represents a shift toward intelligent network coordination. This architecture addresses key challenges in secure data transmission, efficient resource allocation, and intelligent network control. These capabilities are essential for supporting emerging applications in an era defined by pervasive connectivity and artificial intelligence. Progress This paper analyzes three key technologies of the communication–sensing–computing integrated network. First, a collaborative architecture integrating communication and sensing is proposed, which combines cloud–fog–edge computing and blockchain technologies to ensure secure data transmission and storage. Second, high-precision sensing and interference management are examined, including adaptive sensing mechanisms based on demand, a dual-layer optimized spectrum-sharing framework, and strategies for mitigating mutual interference in integrated systems. Third, Artificial Intelligence (AI)-driven frameworks for resource allocation are presented, including dynamic strategies for optimization and scheduling, which enhance multi-dimensional resource efficiency and improve network adaptability to support future intelligent, secure, and high-efficiency integrated networks. Conclusions The integrated architecture and methods presented in this paper form the technical foundation of the 6G communication–sensing–computing integrated network. The blockchain-enhanced framework provides robust security, whereas the adaptive sensing mechanisms and interference management strategies enable improved performance in complex network environments. The AI-driven resource allocation framework further enhances network operation by significantly improving resource utilization efficiency and adaptability. Prospects Future research on integrated communication–sensing–computing networks should focus on core technologies such as collaborative mechanisms across communication, sensing, and computing; heterogeneous data processing methods; and intelligent resource scheduling. These technologies are critical for addressing challenges related to resource optimization, interoperability, and dynamic adaptation in complex network environments. Through continued research and technological advancement, next-generation wireless systems aim to realize an efficient, reliable, and intelligent communication–sensing–computing integrated framework for 6G networks. -
表 1 6G关键性能指标
目标关键指标 2022年欧洲网络安全
与信息大会[2,3]ITU IMT-2030[4] 5G美国/Next G联盟[5,6] 华为[8] B5G联盟(日本)[9] 峰值数据速率 1 Tb/s 50~200 Gbps 0.5~1 Tbps 1 Tbps 100~200 Gbps 用户数据速率 10 Gbps 300~500 Mbps 下行链路:达到1 Gbps
上行链路:达到1 Gbps10~100 Gbps 10~100 Gbps 密度 106设备/km2 106~108设备/km2 106设备/km2 106设备/km2 106设备/km2 可靠性 >1×10–8 ~1×10–5~1×10–7 >1×10–8 >1×10–7 >1×10–7 用户时延 <0.1 ms 0.1~1 ms 0.1~1 ms 0.1 ms 0.1~1 ms 移动性 <1 000 km/h 500~1 000 km/h >500 km/h / 达到1 000 km/h 定位精度 <1 cm 1~10 cm 1 mm~10 cm
六自由度的运动: (x,y,z)室外:50 cm
室内:1 cm1~2 cm -
[1] 尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096?3750.2020.00158.YOU Xiaohu, YIN Hao, and WU Hequan. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096?3750.2020.00158. [2] TRICHIAS K, KALOXYLOS A, and WILLCOCK C. 6G global landscape: A comparative analysis of 6G targets and technological trends[C]. Proceedings of 2024 Joint European Conference on Networks and Communications & 6G Summit, Antwerp, Belgium, 2024: 1–6, doi: 10.1109/EuCNC/6GSummit60053.2024.10597064. [3] Networld Europe. Strategic research and innovation agenda 2022[EB/OL]. https://bscw.5g-ppp.eu/pub/bscw.cgi/d516608/SRIA-2022-WP-Published.pdf, 2022. [4] ITU. Recommendation ITU-R M. 2160–0: Framework and overall objectives of the future development of IMT for 2030 and beyond[EB/OL]. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2160–0-202311-I!!PDF-E.pdf, 2023. [5] 5G Americas White Paper. Mobile communications beyond 2020-The evolution of 5G towards next G[EB/OL]. https://www.5gamericas.org/mobile-communications-beyond-2020-the-evolution-of-5g-towards-next-g/, 2020. [6] Next G Alliance White Paper. 6G applications and use cases[EB/OL]. https://nextgalliance.org/white_papers/6g-applications-and-use-cases/, 2022. [7] ZHANG Haijun, WANG Dong, WU Shuqing, et al. USTB 6G: Key technologies and metaverse applications[J]. IEEE Wireless Communications, 2023, 30(5): 112–119. doi: 10.1109/MWC.012.2300077. [8] Huawei Technologies White Paper. 6G: The next horizon: From connected people and things to connected intelligence[EB/OL]. https://www.huawei.com/en/huaweitech/future-technologies/6g-the-next-horizon, 2022. [9] B5G Promotion Consortium. Beyond 5G white paper (ver. 3.0): Message to the 2030s[EB/OL]. https://b5g.jp/en2/wp-content/uploads/2024/03/whitepaper_overview_3-0.pdf, 2024. [10] ITU. Draft new recommendation ITU-R M. [IMT. FRAMEWORK FOR 2030 AND BEYOND] - framework and overall objectives of the future development of IMT for 2030 and beyond[EB/OL]. https://www.itu.int/md/R19-SG05-C-0131, 2023. [11] 赛迪智库无线电管理研究所. 6G概念及愿景白皮书[EB/OL]. https://media.baogao.com/uploads/soft/2020/200327/20032GJP1.pdf, 2020. [12] SUN Chen, GAO Xiqi, and DING Zhi. Optimization of workload balancing and power allocation for wireless distributed computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7682–7695. doi: 10.1109/TWC.2022.3160493. [13] SALEEM U, LIU Yu, JANGSHER S, et al. Mobility-aware joint task scheduling and resource allocation for cooperative mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 360–374. doi: 10.1109/TWC.2020.3024538. [14] ZENG Qunsong, DU Yuqing, and HUANG Kaibin. Wirelessly powered federated edge learning: Optimal tradeoffs between convergence and power transfer[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 680–695. doi: 10.1109/TWC.2021.3098716. [15] LIU Xiangnan, ZHANG Haijun, LONG Keping, et al. Proximal policy optimization-based transmit beamforming and phase-shift design in an IRS-aided ISAC system for the THz band[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2056–2069. doi: 10.1109/JSAC.2022.3158696. [16] ZHANG Xiaoqi, ZHANG Haijun, SUN Kai, et al. Human-centric irregular RIS-assisted multi-UAV networks with resource allocation and reflecting design for metaverse[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(3): 603–615. doi: 10.1109/JSAC.2023.3345426. [17] HE Yinghui, CAI Yunlong, MAO Hao, et al. RIS-assisted communication radar coexistence: Joint beamforming design and analysis[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2131–2145. doi: 10.1109/JSAC.2022.3155507. [18] LI Shuangyang, YUAN Weijie, LIU Chang, et al. A novel ISAC transmission framework based on spatially-spread orthogonal time frequency space modulation[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1854–1872. doi: 10.1109/JSAC.2022.3155538. [19] ZHANG Yutong, DI Boya, ZHENG Zijie, et al. Distributed multi-cloud multi-access edge computing by multi-agent reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2565–2578. doi: 10.1109/TWC.2020.3043038. [20] CHIU T C, WANG C Y, PANG A C, et al. Collaborative energy beamforming for wireless powered fog computing networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 7942–7956. doi: 10.1109/TWC.2022.3162912. [21] LIU Jingxian, XIONG Ke, NG D W K, et al. Max-min energy balance in wireless-powered hierarchical fog-cloud computing networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7064–7080. doi: 10.1109/TWC.2020.3007805. [22] 闫实, 彭木根, 王文博. 通信-感知-计算融合: 6G愿景与关键技术[J]. 北京邮电大学学报, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.YAN Shi, PENG Mugen, and WANG Wenbo. Integration of communication, sensing and computing: The vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081. [23] GUO Jiajia, WEN Chaokai, JIN Shi, et al. Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2827–2840. doi: 10.1109/TWC.2020.2968430. [24] LIU Yao, LI Min, LIU An, et al. Information-theoretic limits of integrated sensing and communication with correlated sensing and channel states for vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 10161–10166. doi: 10.1109/TVT.2022.3179869. [25] WU Yongzhi, LEMIC F, HAN Chong, et al. Sensing integrated DFT-spread OFDM waveform and deep learning-powered receiver design for terahertz integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2023, 71(1): 595–610. doi: 10.1109/TCOMM.2022.3225920. [26] KUAI Kiaoyan, CHEN Lei, YUAN Xiaojun, et al. Structured turbo compressed sensing for downlink massive MIMO-OFDM channel estimation[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 3813–3826. doi: 10.1109/TWC.2019.2917905. [27] 周雪, 张子扬, 刘向南, 等. 通信-感知-计算-存储深度融合下的无线资源管控[J]. 移动通信, 2024, 48(3): 26–39. doi: 10.3969/j.issn.1006-1010.20240125-0004.ZHOU Xue, ZHANG Ziyang, LIU Xiangnan, et al. Wireless resource management under the deep integration of communication, sensing, computing, and caching[J]. Mobile Communications, 2024, 48(3): 26–39. doi: 10.3969/j.issn.1006-1010.20240125-0004. [28] LIYANAARACHCHI S D, RIIHONEN T, BARNETO C B, et al. Optimized waveforms for 5G–6G communication with sensing: Theory, simulations and experiments[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8301–8315. doi: 10.1109/TWC.2021.3091806. [29] DJELOUAT H, LEINONEN M, and JUNTTI M. Spatial correlation aware compressed sensing for user activity detection and channel estimation in massive MTC[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6402–6416. doi: 10.1109/TWC.2022.3149111. [30] XIE Lei, WANG Peilan, SONG Shenghui, et al. Perceptive mobile network with distributed target monitoring terminals: Leaking communication energy for sensing[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10193–10207. doi: 10.1109/TWC.2022.3182889. [31] ZHANG Haijun, MA Xu, LIU Xiangnan, et al. GNN-based power allocation and user association in digital twin network for the terahertz band[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(10): 3111–3121. doi: 10.1109/JSAC.2023.3313192. [32] GHATAK G, DE DOMENICO A, and COUPECHOUX M. Small cell deployment along roads: Coverage analysis and slice-aware RAT selection[J]. IEEE Transactions on Communications, 2019, 67(8): 5875–5891. doi: 10.1109/TCOMM.2019.2916794. [33] ABDELLATIF A A, MOHAMED A, and CHIASSERINI C F. User-centric networks selection with adaptive data compression for smart health[J]. IEEE Systems Journal, 2018, 12(4): 3618–3628. doi: 10.1109/JSYST.2017.2785302. [34] VAN N T T, LUONG N C, FENG Shaohan, et al. Dynamic network service selection in intelligent reflecting surface-enabled wireless systems: Game theory approaches[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 5947–5961. doi: 10.1109/TWC.2022.3144403. [35] NAPARSTEK O and COHEN K. Deep multi-user reinforcement learning for distributed dynamic spectrum access[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 310–323. doi: 10.1109/TWC.2018.2879433. [36] YOUNIS A, TRAN T X, and POMPILI D. Bandwidth and energy-aware resource allocation for cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6487–6500. doi: 10.1109/TWC.2018.2860008. [37] WANG Xiaojie, CAMMERER S, and BRINK S T. Near-capacity detection and decoding: Code design for dynamic user loads in Gaussian multiple access channels[J]. IEEE Transactions on Communications, 2019, 67(11): 7417–7430. doi: 10.1109/TCOMM.2019.2935726. [38] JIAO Jian, XU Liang, WU Shaohua, et al. Unequal access latency random access protocol for massive machine-type communications[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 5924–5937. doi: 10.1109/TWC.2020.2998518. [39] BUTT M M, MACALUSO I, GALIOTTO C, et al. Fair dynamic spectrum management in licensed shared access systems[J]. IEEE Systems Journal, 2019, 13(3): 2363–2374. doi: 10.1109/JSYST.2018.2869274. [40] 尉志青, 冯志勇, 李怡恒, 等. 太赫兹通信感知一体化波形: 现状与展望[J]. 通信学报, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.WEI Zhiqing, FENG Zhiyong, LI Yiheng, et al. Terahertz joint communication and sensing waveform: Status and prospect[J]. Journal on Communications, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007. [41] ASADUZZAMAN M, ABOZARIBA R, and PATWARY M. Dynamic spectrum sharing optimization and post-optimization analysis with multiple operators in cellular networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1589–1603. doi: 10.1109/TWC.2017.2782248. [42] VAN CHIEN T, BJÖRNSON E, and LARSSON E G. Joint power allocation and load balancing optimization for energy-efficient cell-free massive MIMO networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6798–6812. doi: 10.1109/TWC.2020.3006083. [43] CHOI M, KIM J, and MOON J. Dynamic power allocation and user scheduling for power-efficient and delay-constrained multiple access networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4846–4858. doi: 10.1109/TWC.2019.2929809. [44] ZHANG Haijun, ZHANG Haisen, LIU Wei, et al. Energy efficient user clustering, hybrid precoding and power optimization in terahertz MIMO-NOMA systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2074–2085. doi: 10.1109/JSAC.2020.3000888. [45] ZHANG Haijun, FANG Fang, CHENG Julian, et al. Energy-efficient resource allocation in NOMA heterogeneous networks[J]. IEEE Wireless Communications, 2018, 25(2): 48–53. doi: 10.1109/MWC.2018.1700074. [46] VAN CHIEN T, CANH T N, BJÖRNSON E, et al. Power control in cellular massive MIMO with varying user activity: A deep learning solution[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 5732–5748. doi: 10.1109/TWC.2020.2996368. [47] REN Yuzheng, XIE Renchao, YU F R, et al. Connected and autonomous vehicles in Web3: An intelligence-based reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9863–9877. doi: 10.1109/TITS.2024.3355179. [48] HUANG Hongji, YANG Yuchun, DING Zhiguo, et al. Deep learning-based sum data rate and energy efficiency optimization for MIMO-NOMA systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5373–5388. doi: 10.1109/TWC.2020.2992786. [49] MENG Fan, CHEN Peng, WU Lenan, et al. Power allocation in multi-user cellular networks: Deep reinforcement learning approaches[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6255–6267. doi: 10.1109/TWC.2020.3001736. [50] ZHANG Haijun, YANG Ning, HUANGFU Wei, et al. Power control based on deep reinforcement learning for spectrum sharing[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 4209–4219. doi: 10.1109/TWC.2020.2981320. -