高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

6G通感算一体化体系架构与关键技术

吴子君 张海君 马旭 任语铮

吴子君, 张海君, 马旭, 任语铮. 6G通感算一体化体系架构与关键技术[J]. 电子与信息学报, 2025, 47(4): 876-887. doi: 10.11999/JEIT241151
引用本文: 吴子君, 张海君, 马旭, 任语铮. 6G通感算一体化体系架构与关键技术[J]. 电子与信息学报, 2025, 47(4): 876-887. doi: 10.11999/JEIT241151
WU Zijun, ZHANG Haijun, MA XU, REN Yuzheng. System Architecture and Key Technologies of 6G Integrated Sensing, Communication, and Computing[J]. Journal of Electronics & Information Technology, 2025, 47(4): 876-887. doi: 10.11999/JEIT241151
Citation: WU Zijun, ZHANG Haijun, MA XU, REN Yuzheng. System Architecture and Key Technologies of 6G Integrated Sensing, Communication, and Computing[J]. Journal of Electronics & Information Technology, 2025, 47(4): 876-887. doi: 10.11999/JEIT241151

6G通感算一体化体系架构与关键技术

doi: 10.11999/JEIT241151
基金项目: 国家自然科学基金(62225103, U22B2003),北京市自然科学基金(L241008),中央高校基本科研业务费专项资金(FRF-TP-22-002C2),国家资助博士后研究人员计划资助(GZB20230057)
详细信息
    作者简介:

    吴子君:女,博士生,研究方向为6G移动通信和人工智能技术

    张海君:男,教授,研究方向为6G移动通信、B5G行业应用、数字孪生和人工智能

    马旭:男,博士生,研究方向为6G移动通信和NTN网络

    任语铮:女,特聘副教授,研究方向为6G移动通信、车联网、工业互联网

    通讯作者:

    张海君 zhanghaijun@ustb.edu.cn

  • 中图分类号: TN926

System Architecture and Key Technologies of 6G Integrated Sensing, Communication, and Computing

Funds: The National Natural Science Foundation of China (62225103 and U22B2003), Beijing Natural Science Foundation (L241008), The Fundamental Research Funds for the Central Universities (FRF-TP-22-002C2), The Postdoctoral Fellowship Program of CPSF (GZB20230057)
  • 摘要: 通感算一体化网络作为第六代移动通信系统的重要发展方向,融合了通信、感知和计算功能,为未来智能网络的高效协同提供了技术支撑。该文首先介绍了通感智能协同和云雾边算力协同技术,并结合区块链技术,研究了通感算一体化体系架构,提升了数据传输与存储的安全性。随后,深入分析了高精度感知与干扰管控方法,包括按需适配的高精度感知机制、双层优化频谱共享框架以及通感互干扰的优化策略。最后,围绕弹性接入与资源优化,探讨了人工智能驱动的资源分配框架和动态资源优化与调度策略,有效提升多维资源利用率和网络适应能力,满足未来高效、智能、安全的通感算一体化网络需求。
  • 图  1  6G典型应用场景下的通感算一体化网络

    图  2  通感算智能协同

    图  3  按需适配高精度感知技术

    图  4  通感一体化干扰管控

    图  5  AI驱动的通感算资源分配

    表  1  6G关键性能指标

    目标关键指标 2022年欧洲网络安全
    与信息大会[2,3]
    ITU IMT-2030[4] 5G美国/Next G联盟[5,6] 华为[8] B5G联盟(日本)[9]
    峰值数据速率 1 Tb/s 50~200 Gbps 0.5~1 Tbps 1 Tbps 100~200 Gbps
    用户数据速率 10 Gbps 300~500 Mbps 下行链路:达到1 Gbps
    上行链路:达到1 Gbps
    10~100 Gbps 10~100 Gbps
    密度 106设备/km2 106~108设备/km2 106设备/km2 106设备/km2 106设备/km2
    可靠性 >1×10–8 ~1×10–5~1×10–7 >1×10–8 >1×10–7 >1×10–7
    用户时延 <0.1 ms 0.1~1 ms 0.1~1 ms 0.1 ms 0.1~1 ms
    移动性 <1 000 km/h 500~1 000 km/h >500 km/h / 达到1 000 km/h
    定位精度 <1 cm 1~10 cm 1 mm~10 cm
    六自由度的运动: (x,y,z)
    室外:50 cm
    室内:1 cm
    1~2 cm
    下载: 导出CSV
  • [1] 尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096?3750.2020.00158.

    YOU Xiaohu, YIN Hao, and WU Hequan. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096?3750.2020.00158.
    [2] TRICHIAS K, KALOXYLOS A, and WILLCOCK C. 6G global landscape: A comparative analysis of 6G targets and technological trends[C]. Proceedings of 2024 Joint European Conference on Networks and Communications & 6G Summit, Antwerp, Belgium, 2024: 1–6, doi: 10.1109/EuCNC/6GSummit60053.2024.10597064.
    [3] Networld Europe. Strategic research and innovation agenda 2022[EB/OL]. https://bscw.5g-ppp.eu/pub/bscw.cgi/d516608/SRIA-2022-WP-Published.pdf, 2022.
    [4] ITU. Recommendation ITU-R M. 2160–0: Framework and overall objectives of the future development of IMT for 2030 and beyond[EB/OL]. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2160–0-202311-I!!PDF-E.pdf, 2023.
    [5] 5G Americas White Paper. Mobile communications beyond 2020-The evolution of 5G towards next G[EB/OL]. https://www.5gamericas.org/mobile-communications-beyond-2020-the-evolution-of-5g-towards-next-g/, 2020.
    [6] Next G Alliance White Paper. 6G applications and use cases[EB/OL]. https://nextgalliance.org/white_papers/6g-applications-and-use-cases/, 2022.
    [7] ZHANG Haijun, WANG Dong, WU Shuqing, et al. USTB 6G: Key technologies and metaverse applications[J]. IEEE Wireless Communications, 2023, 30(5): 112–119. doi: 10.1109/MWC.012.2300077.
    [8] Huawei Technologies White Paper. 6G: The next horizon: From connected people and things to connected intelligence[EB/OL]. https://www.huawei.com/en/huaweitech/future-technologies/6g-the-next-horizon, 2022.
    [9] B5G Promotion Consortium. Beyond 5G white paper (ver. 3.0): Message to the 2030s[EB/OL]. https://b5g.jp/en2/wp-content/uploads/2024/03/whitepaper_overview_3-0.pdf, 2024.
    [10] ITU. Draft new recommendation ITU-R M. [IMT. FRAMEWORK FOR 2030 AND BEYOND] - framework and overall objectives of the future development of IMT for 2030 and beyond[EB/OL]. https://www.itu.int/md/R19-SG05-C-0131, 2023.
    [11] 赛迪智库无线电管理研究所. 6G概念及愿景白皮书[EB/OL]. https://media.baogao.com/uploads/soft/2020/200327/20032GJP1.pdf, 2020.
    [12] SUN Chen, GAO Xiqi, and DING Zhi. Optimization of workload balancing and power allocation for wireless distributed computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7682–7695. doi: 10.1109/TWC.2022.3160493.
    [13] SALEEM U, LIU Yu, JANGSHER S, et al. Mobility-aware joint task scheduling and resource allocation for cooperative mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 360–374. doi: 10.1109/TWC.2020.3024538.
    [14] ZENG Qunsong, DU Yuqing, and HUANG Kaibin. Wirelessly powered federated edge learning: Optimal tradeoffs between convergence and power transfer[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 680–695. doi: 10.1109/TWC.2021.3098716.
    [15] LIU Xiangnan, ZHANG Haijun, LONG Keping, et al. Proximal policy optimization-based transmit beamforming and phase-shift design in an IRS-aided ISAC system for the THz band[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2056–2069. doi: 10.1109/JSAC.2022.3158696.
    [16] ZHANG Xiaoqi, ZHANG Haijun, SUN Kai, et al. Human-centric irregular RIS-assisted multi-UAV networks with resource allocation and reflecting design for metaverse[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(3): 603–615. doi: 10.1109/JSAC.2023.3345426.
    [17] HE Yinghui, CAI Yunlong, MAO Hao, et al. RIS-assisted communication radar coexistence: Joint beamforming design and analysis[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2131–2145. doi: 10.1109/JSAC.2022.3155507.
    [18] LI Shuangyang, YUAN Weijie, LIU Chang, et al. A novel ISAC transmission framework based on spatially-spread orthogonal time frequency space modulation[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1854–1872. doi: 10.1109/JSAC.2022.3155538.
    [19] ZHANG Yutong, DI Boya, ZHENG Zijie, et al. Distributed multi-cloud multi-access edge computing by multi-agent reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2565–2578. doi: 10.1109/TWC.2020.3043038.
    [20] CHIU T C, WANG C Y, PANG A C, et al. Collaborative energy beamforming for wireless powered fog computing networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 7942–7956. doi: 10.1109/TWC.2022.3162912.
    [21] LIU Jingxian, XIONG Ke, NG D W K, et al. Max-min energy balance in wireless-powered hierarchical fog-cloud computing networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7064–7080. doi: 10.1109/TWC.2020.3007805.
    [22] 闫实, 彭木根, 王文博. 通信-感知-计算融合: 6G愿景与关键技术[J]. 北京邮电大学学报, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.

    YAN Shi, PENG Mugen, and WANG Wenbo. Integration of communication, sensing and computing: The vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.
    [23] GUO Jiajia, WEN Chaokai, JIN Shi, et al. Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2827–2840. doi: 10.1109/TWC.2020.2968430.
    [24] LIU Yao, LI Min, LIU An, et al. Information-theoretic limits of integrated sensing and communication with correlated sensing and channel states for vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 10161–10166. doi: 10.1109/TVT.2022.3179869.
    [25] WU Yongzhi, LEMIC F, HAN Chong, et al. Sensing integrated DFT-spread OFDM waveform and deep learning-powered receiver design for terahertz integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2023, 71(1): 595–610. doi: 10.1109/TCOMM.2022.3225920.
    [26] KUAI Kiaoyan, CHEN Lei, YUAN Xiaojun, et al. Structured turbo compressed sensing for downlink massive MIMO-OFDM channel estimation[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 3813–3826. doi: 10.1109/TWC.2019.2917905.
    [27] 周雪, 张子扬, 刘向南, 等. 通信-感知-计算-存储深度融合下的无线资源管控[J]. 移动通信, 2024, 48(3): 26–39. doi: 10.3969/j.issn.1006-1010.20240125-0004.

    ZHOU Xue, ZHANG Ziyang, LIU Xiangnan, et al. Wireless resource management under the deep integration of communication, sensing, computing, and caching[J]. Mobile Communications, 2024, 48(3): 26–39. doi: 10.3969/j.issn.1006-1010.20240125-0004.
    [28] LIYANAARACHCHI S D, RIIHONEN T, BARNETO C B, et al. Optimized waveforms for 5G–6G communication with sensing: Theory, simulations and experiments[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8301–8315. doi: 10.1109/TWC.2021.3091806.
    [29] DJELOUAT H, LEINONEN M, and JUNTTI M. Spatial correlation aware compressed sensing for user activity detection and channel estimation in massive MTC[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6402–6416. doi: 10.1109/TWC.2022.3149111.
    [30] XIE Lei, WANG Peilan, SONG Shenghui, et al. Perceptive mobile network with distributed target monitoring terminals: Leaking communication energy for sensing[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10193–10207. doi: 10.1109/TWC.2022.3182889.
    [31] ZHANG Haijun, MA Xu, LIU Xiangnan, et al. GNN-based power allocation and user association in digital twin network for the terahertz band[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(10): 3111–3121. doi: 10.1109/JSAC.2023.3313192.
    [32] GHATAK G, DE DOMENICO A, and COUPECHOUX M. Small cell deployment along roads: Coverage analysis and slice-aware RAT selection[J]. IEEE Transactions on Communications, 2019, 67(8): 5875–5891. doi: 10.1109/TCOMM.2019.2916794.
    [33] ABDELLATIF A A, MOHAMED A, and CHIASSERINI C F. User-centric networks selection with adaptive data compression for smart health[J]. IEEE Systems Journal, 2018, 12(4): 3618–3628. doi: 10.1109/JSYST.2017.2785302.
    [34] VAN N T T, LUONG N C, FENG Shaohan, et al. Dynamic network service selection in intelligent reflecting surface-enabled wireless systems: Game theory approaches[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 5947–5961. doi: 10.1109/TWC.2022.3144403.
    [35] NAPARSTEK O and COHEN K. Deep multi-user reinforcement learning for distributed dynamic spectrum access[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 310–323. doi: 10.1109/TWC.2018.2879433.
    [36] YOUNIS A, TRAN T X, and POMPILI D. Bandwidth and energy-aware resource allocation for cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6487–6500. doi: 10.1109/TWC.2018.2860008.
    [37] WANG Xiaojie, CAMMERER S, and BRINK S T. Near-capacity detection and decoding: Code design for dynamic user loads in Gaussian multiple access channels[J]. IEEE Transactions on Communications, 2019, 67(11): 7417–7430. doi: 10.1109/TCOMM.2019.2935726.
    [38] JIAO Jian, XU Liang, WU Shaohua, et al. Unequal access latency random access protocol for massive machine-type communications[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 5924–5937. doi: 10.1109/TWC.2020.2998518.
    [39] BUTT M M, MACALUSO I, GALIOTTO C, et al. Fair dynamic spectrum management in licensed shared access systems[J]. IEEE Systems Journal, 2019, 13(3): 2363–2374. doi: 10.1109/JSYST.2018.2869274.
    [40] 尉志青, 冯志勇, 李怡恒, 等. 太赫兹通信感知一体化波形: 现状与展望[J]. 通信学报, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.

    WEI Zhiqing, FENG Zhiyong, LI Yiheng, et al. Terahertz joint communication and sensing waveform: Status and prospect[J]. Journal on Communications, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.
    [41] ASADUZZAMAN M, ABOZARIBA R, and PATWARY M. Dynamic spectrum sharing optimization and post-optimization analysis with multiple operators in cellular networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1589–1603. doi: 10.1109/TWC.2017.2782248.
    [42] VAN CHIEN T, BJÖRNSON E, and LARSSON E G. Joint power allocation and load balancing optimization for energy-efficient cell-free massive MIMO networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6798–6812. doi: 10.1109/TWC.2020.3006083.
    [43] CHOI M, KIM J, and MOON J. Dynamic power allocation and user scheduling for power-efficient and delay-constrained multiple access networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4846–4858. doi: 10.1109/TWC.2019.2929809.
    [44] ZHANG Haijun, ZHANG Haisen, LIU Wei, et al. Energy efficient user clustering, hybrid precoding and power optimization in terahertz MIMO-NOMA systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2074–2085. doi: 10.1109/JSAC.2020.3000888.
    [45] ZHANG Haijun, FANG Fang, CHENG Julian, et al. Energy-efficient resource allocation in NOMA heterogeneous networks[J]. IEEE Wireless Communications, 2018, 25(2): 48–53. doi: 10.1109/MWC.2018.1700074.
    [46] VAN CHIEN T, CANH T N, BJÖRNSON E, et al. Power control in cellular massive MIMO with varying user activity: A deep learning solution[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 5732–5748. doi: 10.1109/TWC.2020.2996368.
    [47] REN Yuzheng, XIE Renchao, YU F R, et al. Connected and autonomous vehicles in Web3: An intelligence-based reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9863–9877. doi: 10.1109/TITS.2024.3355179.
    [48] HUANG Hongji, YANG Yuchun, DING Zhiguo, et al. Deep learning-based sum data rate and energy efficiency optimization for MIMO-NOMA systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5373–5388. doi: 10.1109/TWC.2020.2992786.
    [49] MENG Fan, CHEN Peng, WU Lenan, et al. Power allocation in multi-user cellular networks: Deep reinforcement learning approaches[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6255–6267. doi: 10.1109/TWC.2020.3001736.
    [50] ZHANG Haijun, YANG Ning, HUANGFU Wei, et al. Power control based on deep reinforcement learning for spectrum sharing[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 4209–4219. doi: 10.1109/TWC.2020.2981320.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  120
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-04-01
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回