高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于5G空口的通感一体化实测数据集

丁圣利 陈保龙 姜大洁

丁圣利, 陈保龙, 姜大洁. 基于5G空口的通感一体化实测数据集[J]. 电子与信息学报, 2025, 47(4): 909-920. doi: 10.11999/JEIT241142
引用本文: 丁圣利, 陈保龙, 姜大洁. 基于5G空口的通感一体化实测数据集[J]. 电子与信息学报, 2025, 47(4): 909-920. doi: 10.11999/JEIT241142
DING Shengli, CHEN Baolong, JIANG Dajie. A Measured Dataset for ISAC Based on 5G Air Interface[J]. Journal of Electronics & Information Technology, 2025, 47(4): 909-920. doi: 10.11999/JEIT241142
Citation: DING Shengli, CHEN Baolong, JIANG Dajie. A Measured Dataset for ISAC Based on 5G Air Interface[J]. Journal of Electronics & Information Technology, 2025, 47(4): 909-920. doi: 10.11999/JEIT241142

基于5G空口的通感一体化实测数据集

doi: 10.11999/JEIT241142
基金项目: 国家科技重大专项(2024ZD1300500)
详细信息
    作者简介:

    丁圣利:男,高级工程师,研究方向为通感一体化、非地面网络等

    陈保龙:男,高级工程师,研究方向为移动通信物理层设计

    姜大洁:男,高级工程师,研究方向为通感一体化、智能超表面、反向散射通信等

    通讯作者:

    丁圣利 victording@vivo.com

  • 中图分类号: TN926.1

A Measured Dataset for ISAC Based on 5G Air Interface

Funds: The National Science and Technology Major Project (2024ZD1300500)
  • 摘要: 通感一体化是国际电信联盟定义的6G的六大场景之一。为了推动通感一体化的技术落地和标准制定,该文公开了一个实测的、基于5G空口的通感一体化感知信号数据集。该数据集使用通用软件无线电外设工作于sub-6 GHz频段,运行5G NR (New Radio)物理层协议栈,复用NR的下行解调参考信号作为感知信号进行数据采集,包含了2个场景和2种感知模式共8组数据。在每个场景和每种感知模式下,提供了包含运动感知目标和背景环境的连续30 s的8通道信道信息数据,并提供了仅包含背景环境的数据。为了清晰地展示数据特征,该文通过经典的2维离散傅里叶变换(2D-DFT)算法给出了典型感知信号的时延谱和时延-多普勒谱,并对其进行了分析和描述。此外,该文提供了基于过采样离散傅里叶逆变换(IDFT)算法的时延域参考径方法,用来进行双基地感知模式下的感知非理想因素消除,以验证数据集的可靠性和有效性。
  • 图  1  6种感知模式示意图

    图  2  单基地感知数据采集系统

    图  3  双基地感知数据采集系统

    图  4  测试场景示意图

    图  5  一次往返运动金属导体球的速度和位置

    图  6  感知信号配置

    图  7  单基地感知数据特征

    图  8  双基地感知数据特征

    图  9  感知非理想因素消除

    图  10  感知目标运动轨迹

    表  1  文件夹标签与数据含义

    文件夹标签 数据含义 数据文件数量
    sc1_mono_bg 场景1、单基地感知、仅背景杂波 10
    sc1_mono_st 场景1、单基地感知、有感知目标 150
    sc1_bi_bg 场景1、双基地感知、仅背景杂波 10
    sc1_bi_st 场景1、双基地感知、有感知目标 150
    sc2_mono_bg 场景2、单基地感知、仅背景杂波 10
    sc2_mono_st 场景2、单基地感知、有感知目标 150
    sc2_bi_bg 场景2、双基地感知、仅背景杂波 10
    sc2_bi_st 场景2、双基地感知、有感知目标 150
    下载: 导出CSV
  • [1] LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
    [2] CUI Yuanhao, LIU Fan, JING Xiaojun, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158–167. doi: 10.1109/MNET.010.2100152.
    [3] PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038.
    [4] DE LIMA C, BELOT D, BERKVENS R, et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges[J]. IEEE Access, 2021, 9: 26902–26925. doi: 10.1109/ACCESS.2021.3053486.
    [5] International Telecommunication Union. Recommendation ITU-R M. 2160 Framework and overall objectives of the future development of IMT for 2030 and beyond[S]. Geneva: International Telecommunication Union, 2023.
    [6] BARNETO C B, RIIHONEN T, TURUNEN M, et al. Full-duplex OFDM radar with LTE and 5G NR waveforms: Challenges, solutions, and measurements[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(10): 4042–4054. doi: 10.1109/TMTT.2019.2930510.
    [7] WEI Zhiqing, QU Hanyang, WANG Yuan, et al. Integrated sensing and communication signals toward 5G-A and 6G: A survey[J]. IEEE Internet of Things Journal, 2023, 10(13): 11068–11092. doi: 10.1109/JIOT.2023.3235618.
    [8] EVERETT E, SAHAI A, and SABHARWAL A. Passive self-interference suppression for full-duplex infrastructure nodes[J]. IEEE Transactions on Wireless Communications, 2014, 13(2): 680–694. doi: 10.1109/TWC.2013.010214.130226.
    [9] ZHANG J A, RAHMAN M L, WU Kai, et al. Enabling joint communication and radar sensing in mobile networks—A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 306–345. doi: 10.1109/COMST.2021.3122519.
    [10] 3rd Generation Partnerships Project. Rel-19 Channel Modeling for ISAC and new spectrum (7~24 GHz)[R]. RP-231798, 2023.
    [11] ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120.
    [12] WU Yiling, ZHAO Yuping, and LI Dou. Sampling frequency offset estimation for pilot-aided OFDM systems in mobile environment[J]. Wireless Personal Communications, 2012, 62(1): 215–226. doi: 10.1007/s11277-010-0049-x.
    [13] WU Kai, PEGORARO J, MENEGHELLO F, et al. Sensing in bistatic ISAC systems with clock asynchronism: A signal processing perspective[J]. IEEE Signal Processing Magazine, 2024, 41(5): 31–43. doi: 10.1109/MSP.2024.3418725.
    [14] 丁圣利, 李健之, 陈保龙, 等. 通感一体化中的感知非理想因素及其消除方法[J]. 移动通信, 2023, 47(9): 46–56. doi: 10.3969/j.issn.1006-1010.20230721-0001.

    DING Shengli, LI Jianzhi, CHEN Baolong, et al. Cancellation methods for sensing related non-ideal factors in integrated sensing and communication system[J]. Mobile Communications, 2023, 47(9): 46–56. doi: 10.3969/j.issn.1006-1010.20230721-0001.
    [15] LUO Jiajin, ZHOU Baojian, YU Yang, et al. Sensiverse: A dataset for ISAC study[J]. arXiv preprint arXiv: 2308.13789, 2023. doi: 10.48550/arXiv.2308.13789.
    [16] LI Xiang, ZHANG Daqing, LV Qin, et al. IndoTrack: Device-free indoor human tracking with commodity Wi-Fi[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 72. doi: 10.1145/3130940.
    [17] WANG Zhongqin, ZHANG J A, XU Min, et al. Single-target real-time passive WiFi tracking[J]. IEEE Transactions on Mobile Computing, 2023, 22(6): 3724–3742. doi: 10.1109/TMC.2022.3141115.
    [18] PEGORARO J, LACRUZ J O, AZZINO T, et al. JUMP: Joint communication and sensing with unsynchronized transceivers made practical[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 9759–9775. doi: 10.1109/TWC.2024.3365853.
    [19] DING Shengli, CHEN Baolong, LI Jianzhi, et al. Integrated sensing and communication: Prototype and key processing algorithms[C]. 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023: 225–230. doi: 10.1109/ICCWorkshops57953.2023.10283732.
    [20] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [21] MENEGHELLO F, GARLISI D, DAL FABBRO N, et al. SHARP: Environment and person independent activity recognition with commodity IEEE 802.11 access points[J]. IEEE Transactions on Mobile Computing, 2023, 22(10): 6160–6175. doi: 10.1109/TMC.2022.3185681.
    [22] YU Xiaohan, CHEN Xiaolong, HUANG Yong, et al. Radar moving target detection in clutter background via adaptive dual-threshold sparse Fourier transform[J]. IEEE Access, 2019, 7: 58200–58211. doi: 10.1109/ACCESS.2019.2914232.
    [23] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, USA, 1996: 226–231.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  78
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-27
  • 修回日期:  2025-03-31
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回