高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于路径似然模型与HMM序列匹配定位的地铁隧道三维重建

胡钊政 王书恒 孟杰 冯锋 朱紫威 李维刚

胡钊政, 王书恒, 孟杰, 冯锋, 朱紫威, 李维刚. 基于路径似然模型与HMM序列匹配定位的地铁隧道三维重建[J]. 电子与信息学报, 2025, 47(7): 2273-2284. doi: 10.11999/JEIT241122
引用本文: 胡钊政, 王书恒, 孟杰, 冯锋, 朱紫威, 李维刚. 基于路径似然模型与HMM序列匹配定位的地铁隧道三维重建[J]. 电子与信息学报, 2025, 47(7): 2273-2284. doi: 10.11999/JEIT241122
HU Zhaozheng, WANG Shuheng, MENG Jie, FENG Feng, ZHU Ziwei, LI Weigang. 3D Reconstruction of Metro Tunnel Based on Path Likelihood Model and HMM Sequence Matching Localization[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2273-2284. doi: 10.11999/JEIT241122
Citation: HU Zhaozheng, WANG Shuheng, MENG Jie, FENG Feng, ZHU Ziwei, LI Weigang. 3D Reconstruction of Metro Tunnel Based on Path Likelihood Model and HMM Sequence Matching Localization[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2273-2284. doi: 10.11999/JEIT241122

基于路径似然模型与HMM序列匹配定位的地铁隧道三维重建

doi: 10.11999/JEIT241122 cstr: 32379.14.JEIT241122
基金项目: 国家自然科学基金重点项目(52332010),中建三局横向课题(20233h0392),武汉科技大学冶金自动化与检测技术教育部工程研究中心开放基金
详细信息
    作者简介:

    胡钊政:男,博士,教授,研究方向为3D计算机视觉、智能网联汽车、机器人定位与导航、智能车路协同

    王书恒:男,硕士生,研究方向为激光SLAM定位、机器人定位、多传感器融合定位等

    孟杰:男,博士,副研究员,研究方向为移动机器人、自动驾驶、自主导航定位、智能交通运维等

    冯锋:男,博士生,研究方向为基于视觉的机器人定位、多传感器融合定位等

    朱紫威:男,硕士生,研究方向为工业应用研究、智能建筑、人工智能等其他相关技术等

    李维刚:男,博士,教授,研究方向为工业过程控制、人工智能与机器学习算法

    通讯作者:

    胡钊政 zzhu@whut.edu.cn

  • 中图分类号: TN249; TP242

3D Reconstruction of Metro Tunnel Based on Path Likelihood Model and HMM Sequence Matching Localization

Funds: The State Key Program of National Natural Science Foundation of China (52332010), China Construction Third Bureau Horizontal Projects (20233h0392), The Open Project of Engineering Research Center for Metallurgical Automation and Measurement Technology of MOE, Wuhan University of Science and Technology
  • 摘要: 在地铁隧道等退化场景下,主流的激光或视觉SLAM算法实用性低,无法有效完成三维重建工作。该文提出一种基于路径似然模型(PLM)与隐马尔可夫(HMM)序列匹配的大规模地铁隧道三维重建方法,将三维重建问题分解为里程计定位与基于图优化的高精度三维重建两个过程。针对里程计定位,该文提出一种融合路径似然模型的里程计方法。在粒子滤波框架下,将轨道约束转化为观测,并与IMU和轮速计数据融合,实现在轨机器人定位。此外,还提出一种基于HMM序列匹配的回环检测方法,将回环检测问题转化为序列匹配问题,提升回环检测的性能。针对重建问题,提出一种基于大规模因子图优化的三维重建方法,通过多约束条件完成位姿图优化,从而实现大规模地铁隧道的高精度三维重建。在成都韦家碾-双水碾和沙河源-洞子口两段地铁站之间进行了实地测试。实验结果表明,该文提出的PLM和HMM序列匹配可以有效提升里程计定位精度和回环检测性能,从而实现大规模地铁隧道场景的高精度三维重建。
  • 图  1  本文算法流程图

    图  2  轨道施工路径

    图  3  基于HMM特征序列匹配的回环检测示意图

    图  4  因子图示意图

    图  5  在轨巡检机器人及其传感器布置图

    图  6  韦家碾-双水碾实验场景图

    图  7  路径似然模型(PLM)图

    图  8  本文方法三维重建效果图

    图  9  韦家碾-双水碾消融实验对比图

    图  10  韦家碾-双水碾对比实验图

    图  11  洞子口-沙河源实验场景图

    图  12  本文方法三维重建效果图

    图  13  洞子口-沙河源消融实验对比图

    图  14  洞子口-沙河源对比实验图

    表  1  韦家碾-双水碾消融实验误差评估表 (m)

    方法 He Te Re Le
    DR 59.35 35.82 37.93 77.85
    DR+PATH 1.72 0.15 2.81 4.29
    DR+PATH+HMM 0.21 0.09 0.37 0.54
    下载: 导出CSV

    表  2  韦家碾-双水碾对比实验误差评估表 (m)

    方法 He Te Re Le
    LIO-SAM N/A N/A N/A >100
    Faster-LIO N/A N/A N/A >100
    本文方法 0.21 0.09 0.37 0.54
    下载: 导出CSV

    表  3  洞子口-沙河源消融实验误差评估表(m)

    方法 He Te Re Le
    DR 48.09 33.97 25.26 67.81
    DR+PATH 1.33 0.12 2.51 3.25
    DR+PATH+HMM 0.16 0.09 0.33 0.48
    下载: 导出CSV

    表  4  洞子口-沙河源对比实验误差评估表 (m)

    方法 He Te Re Le
    LIO-SAM 7.67 2.10 23.09 49.41
    Faster-LIO 0.45 0.07 8.79 25.07
    本文方法 0.16 0.09 0.33 0.48
    下载: 导出CSV
  • [1] 程国柱, 吕岩峰, 冯天军. 地铁站周边常规公交换乘站点布局多目标优化模型[J]. 吉林大学学报(工学版), 2025. doi: 10.13229/j.cnki.jdxbgxb.20240908.

    CHENG Guozhu, LYU Yanfeng, and FENG Tianjun. Multi-objective optimization model for bus transfer station layouts around metro stations[J]. Journal of Jilin University (Engineering and Technology Edition), 2025. doi: 10.13229/j.cnki.jdxbgxb.20240908.
    [2] 费伦林, 杨晓秋, 桑运龙, 等. 基于多传感器融合技术的隧道运营安全智能巡检机器人[J]. 中国交通信息化, 2023(3): 146–148. doi: 10.13439/j.cnki.itsc.2023.03.023.

    FEI Lunlin, YANG Xiaoqiu, SANG Yunlong, et al. Intelligent inspection robot for tunnel operation safety based on multi-sensor fusion technology[J]. China ITS Journal, 2023(3): 146–148. doi: 10.13439/j.cnki.itsc.2023.03.023.
    [3] 张宗华, 刘巍, 刘国栋, 等. 三维视觉测量技术及应用进展[J]. 中国图象图形学报, 2021, 26(6): 1483–1502. doi: 10.11834/jig.200841.

    ZHANG Zonghua, LIU Wei, LIU Guodong, et al. Overview of the development and application of 3D vision measurement technology[J]. Journal of Image and Graphics, 2021, 26(6): 1483–1502. doi: 10.11834/jig.200841.
    [4] ZHOU Zhizhuo and TULSIANI S. SparseFusion: Distilling view-conditioned diffusion for 3D reconstruction[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 12588–12597. doi: 10.1109/CVPR52729.2023.01211.
    [5] 梅天灿, 秦宇晟, 杨宏, 等. 动态场景下基于视觉同时定位与地图构建技术的多层次语义地图构建方法[J]. 电子与信息学报, 2023, 45(5): 1737–1746. doi: 10.11999/JEIT220153.

    MEI Tiancan, QIN Yusheng, YANG Hong, et al. Multilevel semantic maps based on visual simultaneous localization and mapping in dynamic scenarios[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1737–1746. doi: 10.11999/JEIT220153.
    [6] 周非, 周志远, 张宇曈, 等. 融合神经辐射场和视觉同时定位与地图构建的混合场景表示方法[J]. 电子与信息学报, 2024, 46(11): 4178–4187. doi: 10.11999/JEIT240316.

    ZHOU Fei, ZHOU Zhiyuan, ZHANG Yutong, et al. Hybrid scene representation method integrating neural radiation fields and visual simultaneous localization and mapping[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4178–4187. doi: 10.11999/JEIT240316.
    [7] ZHANG Ji and SINGH S. LOAM: Lidar odometry and mapping in real-time[J]. Robotics: Science and Systems, 2014, 2(9): 1–9.
    [8] SHAN Tixiao and ENGLOT B. LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 2018: 4758–4765. doi: 10.1109/IROS.2018.8594299.
    [9] SHAN Tixiao, ENGLOT B, MEYERS D, et al. LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2020: 5135–5142. doi: 10.1109/IROS45743.2020.9341176.
    [10] HEIRICH O, ROBERTSON P, and STRANG T. RailSLAM-localization of rail vehicles and mapping of geometric railway tracks[C]. 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013: 5212–5219. doi: 10.1109/ICRA.2013.6631322.
    [11] 李帅鑫, 李九人, 田滨, 等. 面向点云退化的隧道环境的无人车激光SLAM方法[J]. 测绘学报, 2021, 50(11): 1487–1499. doi: 10.11947/j.AGCS.2021.20210248.

    LI Shuaixin, LI Jiuren, TIAN Bin, et al. A laser SLAM method for unmanned vehicles in point cloud degenerated tunnel environments[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1487–1499. doi: 10.11947/j.AGCS.2021.20210248.
    [12] DAI Xinye, SONG Weiwei, WANG Yusheng, et al. LiDAR-inertial integration for rail vehicle localization and mapping in tunnels[J]. IEEE Sensors Journal, 2023, 23(15): 17426–17438. doi: 10.1109/JSEN.2023.3286437.
    [13] JÚNIOR G P C, REZENDE A M C, MIRANDA V F, et al. EKF-LOAM: An adaptive fusion of LiDAR SLAM with wheel odometry and inertial data for confined spaces with few geometric features[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 1458–1471. doi: 10.1109/TASE.2022.3169442.
    [14] BROSSARD M, BARRAU A, and BONNABEL S. AI-IMU dead-reckoning[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 585–595. doi: 10.1109/TIV.2020.2980758.
    [15] TAO Qianwen, HU Zhaozheng, LIU Yulin, et al. LiDAR-based localization in tunnel from HD map matching with pavement marking likelihood[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8504814. doi: 10.1109/TIM.2024.3411138.
    [16] HANSEN P and BROWNING B. Visual place recognition using HMM sequence matching[C]. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, IL, USA, 2014: 4549–4555. doi: 10.1109/IROS.2014.6943207.
    [17] KIM G and KIM A. Scan context: Egocentric spatial descriptor for place recognition within 3D point cloud map[C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 2018: 4802–4809. doi: 10.1109/IROS.2018.8593953.
    [18] 胡钊政, 刘佳蕙, 黄刚, 等. 融合WiFi、激光雷达与地图的机器人室内定位[J]. 电子与信息学报, 2021, 43(8): 2308–2316. doi: 10.11999/JEIT200671.

    HU Zhaozheng, LIU Jiahui, HUANG Gang, et al. Integration of WiFi, laser, and map for robot indoor localization[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2308–2316. doi: 10.11999/JEIT200671.
    [19] KAESS M, JOHANNSSON H, ROBERTS R, et al. iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering[C]. 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011: 3281–3288. doi: 10.1109/ICRA.2011.5979641.
    [20] JONES M. Sublevel set approximation in the hausdorff and volume metric with application to path planning and obstacle avoidance[J]. IEEE Transactions on Automatic Control, 2024, 69(11): 8112–8119. doi: 10.1109/TAC.2024.3412594.
    [21] BAI Chunge, XIAO Tao, CHEN Yajie, et al. Faster-LIO: Lightweight tightly coupled lidar-inertial odometry using parallel sparse incremental voxels[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4861–4868. doi: 10.1109/LRA.2022.3152830.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  180
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-23
  • 修回日期:  2025-04-01
  • 网络出版日期:  2025-04-21
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回