A Survey on UAV-Enabled Integrated Sensing and Communication Networking and Technologies
-
摘要: 无人机(UAV)凭借灵活部署和高移动性,在通信感知一体化(ISAC)技术的推动下,展现出广阔的应用前景。该文系统地综述了无人机使能的ISAC组网与关键技术的研究进展。首先,概述了ISAC技术的原理与特点。其次,针对感知辅助通信任务的应用场景,探讨了ISAC设备在无人机与地面基站中部署的不同组网结构及其优势;针对通感融合任务的应用场景,分析了无人机在定位、边缘计算与缓存等面向通感融合任务中的组网模式及关键作用。此外,从感知使能技术和资源分配技术两个维度,总结了无人机使能的ISAC关键技术发展现状。最后,针对无人机面临的能量受限、复杂传播环境、地理环境和网络安全性等挑战,探讨了无人机与无线携能、可重构智能表面、地理信息辅助及隐蔽通信等技术的融合进展,为未来智慧城市、地理测绘、应急救援等新兴低空经济场景提供技术路径与研究方向。Abstract:
Significance Unmanned Aerial Vehicles (UAVs) have attracted significant attention due to their flexibility, high mobility, and potential for widespread applications across various industries. The integration of UAVs with Integrated Sensing and Communication (ISAC) technology enables the combination of sensing and communication capabilities on a single platform, facilitating high-quality data collection, processing, and real-time communication, particularly in complex environments. This integration offers substantial benefits in both communication and environmental sensing, addressing key challenges in emerging fields, particularly in low-altitude economic scenarios such as smart cities, geomatics, and emergency rescue. Progress This paper provides a systematic survey of UAV-enabled ISAC networks, offering a comprehensive discussion on their underlying principles and the integration of communication and sensing tasks. The first section introduces the foundational principles and characteristics of ISAC technology, including a review of waveform sensing-communication integration and multi-modal sensing-communication technologies. The paper also examines recent efforts toward standardizing ISAC technology and emphasizes the importance of sharing and co-scheduling hardware and spectrum resources to improve overall system efficiency. Subsequently, the paper explores two main network architectures for deploying ISAC devices on UAVs and ground stations. First, it investigates sensing-assisted communication tasks, where the deployment of ISAC devices within UAV communication networks ensures efficient resource allocation, improved coverage, and enhanced communication performance, particularly in challenging environments. Second, it discusses sensing-communication fusion tasks, where UAV-enabled ISAC networks integrate functions such as positioning, edge computing, and data caching. UAVs play a pivotal role in combining these functionalities to optimize overall system performance. Through UAV-enabled ISAC technology, the system’s capacity to collect environmental data, perform real-time communication, and support intelligent decision-making in complex, dynamic conditions is significantly enhanced. Additionally, the paper surveys the current state of key UAV-enabled ISAC technologies, focusing on two main aspects: sensing-enabled techniques and resource allocation strategies. From the perspective of sensing-enabled technologies, advanced techniques such as massive MIMO, collaborative sensing, near-field communication, and multi-modal sensing notably improve UAVs’ sensing precision and coverage in dynamic environments, thereby facilitating the successful execution of various tasks. Furthermore, the paper examines resource allocation techniques, addressing the challenges of distributing energy, spectrum, and processing power within energy-constrained UAV systems. It also covers the integration of wireless energy harvesting, Reconfigurable Intelligent Surfaces (RIS), and advanced communication techniques, such as covert communication, which enable UAVs to operate more efficiently in challenging environments with limited energy resources. Conclusions UAV-enabled ISAC technology is progressing rapidly and holds significant potential to transform the integration of communication and sensing tasks within UAV networks. By capitalizing on UAV mobility and versatility, ISAC networks facilitate the seamless integration of communication and environmental sensing on a single platform. This integration enhances UAV performance and adaptability in complex environments while improving resource utilization, ensuring the efficient operation of UAV networks in applications such as smart cities, geographic surveying, and emergency response. Prospects Although significant progress has been made in developing UAV-enabled ISAC networks, several challenges persist. Energy limitations, complex transmission environments, and network security are critical issues that must be addressed for UAVs to operate effectively in dynamic and diverse environments. Future research will need to focus on overcoming these challenges by integrating emerging technologies such as wireless energy harvesting and RIS, which can enhance energy efficiency and network performance. Furthermore, geographic information-enabled technologies, such as radio maps, will increasingly play a crucial role in optimizing UAV deployment and navigation, particularly in complex environments. In addition, integrating covert communication techniques into UAV networks offers a promising avenue for improving the security and privacy of UAV-based communication systems, especially in sensitive applications such as defense and surveillance. The future of UAV-enabled ISAC networks will depend on addressing challenges related to energy constraints, environmental complexity, and security concerns, while enhancing the efficiency and effectiveness of communication and sensing tasks. As these technologies mature, UAVs will become even more integral to emerging low-altitude economies, fostering the development of smart cities, efficient disaster response systems, and intelligent traffic management. -
表 1 通感一体化网络中的波形设计分类
表 2 面向感知辅助通信任务的无人机通感一体化组网分类
无人机功能 一体化波形方案 网络部署特点 主要优化目标 参考文献 通信基站 时分波形 允许感知和通信在时间上交替进行 最大化用户通信速率 [12] 通信终端 蜂窝信号 使用蜂窝基站信号测距无人机 预测并补偿时钟同步偏差 [13] 通信基站 时分波形 允许无人机在通信过程中根据实际需求灵活配置感知时间 最大化平均系统吞吐量 [19] 通信基站 统一的波形设计 利用无人机高移动性特点提高基站服务的安全性 最大化基站实时保密率与合法用户通信速率 [20] 通信基站 时分波形设计 结合天地空地综合网络与卫星信息辅助 最大化系统能量效率 [21] 频谱感知 频分波形 使用认知无线电的压缩感知技术 最大化占用子信道检测概率 [33] 信道估计 / 深度融合无人机飞行仿真与实际场景 最小化信道路径损耗误差 [34] 通信终端 蜂窝信号 无人机记录无线下行信号反射并反馈基站 最小化系统能耗 [35] 表 3 面向通感融合任务的无人机使能通感一体化组网分类
无人机功能 一体化波形方案 网络部署特点 主要优化目标 参考文献 定位/边缘缓存节点 频分波形 定位信号自发自收/多播技术和多天线结合
完成内容交付与感知最大化雷达接收功率与通信速率组合的效用函数 [7] 定位 无蜂窝通信信号 定位信号自发它收/基于无蜂窝网络架构实现ISAC 最小化感知目标位置的克拉美罗下界 [11] 定位 时分波形 定位信号自发它收/使用毫米波进行协作感知 最小化响应时间延迟 [14] 数据采集/边缘缓存节点 时分波形 考虑无人机传感与通信之间的相互干扰 最大化雷达估计速率 [15] 定位 频分波形 定位信号它发自收自发自收/考虑多无人机与
多用户关联问题最大化无人机间最小加权频谱效率 [16] 定位 时分波形 定位信号自发自收/多无人机重叠分配相同任务 最小化整体感知任务完成时间 [17] 定位 时分波形 定位信号自发自收/感知持续时间根据应用
需求灵活配置最大化平均系统吞吐量 [19] 定位 蜂窝信号 定位信号它发自收/无人机和基站形成双基地
合成孔径雷达进行感知最小化系统能耗 [35] 目标监测 统一的波形设计 考虑无人机感知信息对于控制中心的滞后性 最小化系统的平均峰值AoI [36] 边缘计算节点 时分波形 无人机携能供给用户 最大化无人机能量效率和任务处理速率 [37] 终端应用 时分/空分波形 多基站协同组网模式辅助无人机终端应用 / [38] -
[1] 中国电信集团有限公司, 爱立信, 诺基亚, 等. 通感一体低空网络白皮书[R]. 2024.China Telecom, Ericsson, Nokia, et al. The low-altitude network by integrated sensing and communication[R]. 2024. [2] IMT-2020(5G)推进组. 5G无人机应用白皮书[R]. 2018.IMT-2020 (5G) Promotion Group. White paper on 5G drone applications[R]. 2018. [3] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789. [4] KIM J H, LEE M C, and LEE T S. Generalized UAV deployment for UAV-assisted cellular networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 7894–7910. doi: 10.1109/twc.2023.3345839. [5] LIU An, HUANG Zhe, LI Min, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994–1034. doi: 10.1109/comst.2022.3149272. [6] ZHANG Jifa, LU Weidang, XING Chengwen, et al. Intelligent integrated sensing and communication: A survey[J]. Science China Information Sciences, 2025, 68(3): 131301. doi: 10.1007/s11432-024-4205-8. [7] BAYESSA G A, CHAI Rong, LIANG Chengchao, et al. Joint UAV deployment and precoder optimization for multicasting and target sensing in UAV-assisted ISAC networks[J]. IEEE Internet of Things Journal, 2024, 11(20): 33392–33405. doi: 10.1109/jiot.2024.3430371. [8] 王莉, 魏青, 徐连明, 等. 面向通信-导航-感知一体化的应急无人机网络低能耗部署研究[J]. 通信学报, 2022, 43(7): 1–20. doi: 10.11959/j.issn.1000-436x.2022138.WANG Li, WEI Qing, XU Lianming, et al. Research on low-energy-consumption deployment of emergency UAV network for integrated communication-navigating-sensing[J]. Journal on Communications, 2022, 43(7): 1–20. doi: 10.11959/j.issn.1000-436x.2022138. [9] CHENG Xiang, ZHANG Haotian, ZHANG Jianan, et al. Intelligent multi-modal sensing-communication integration: Synesthesia of machines[J]. IEEE Communications Surveys & Tutorials, 2024, 26(1): 258–301. doi: 10.1109/comst.2023.3336917. [10] CIUONZO D, DE MAIO A, FOGLIA G, et al. Intrapulse radar-embedded communications via multiobjective optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2960–2974. doi: 10.1109/taes.2015.140821. [11] 崔世林, 薛婉雨, 李佳珉. 基于无蜂窝通感一体化系统的无人机轨迹优化[J]. 移动通信, 2024, 48(9): 166–172. doi: 10.3969/j.issn.1006-1010.20240909-0003.CUI Shilin, XUE Wanyu, and LI Jiamin. UAV trajectory optimization for cellular-free integrated sensing and communication systems[J]. Mobile Communications, 2024, 48(9): 166–172. doi: 10.3969/j.issn.1006-1010.20240909-0003. [12] MENG Kaitao, WU Qingqing, MA Shaodan, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1211–1215. doi: 10.1109/lwc.2022.3161338. [13] YAO Zhiqiang, GUO Xiaona, CHEN Kang, et al. Ranging estimation and implementation with cellular signals for UAV navigation[C]. 98th IEEE Vehicular Technology Conference, Hong Kong, China, 2023: 1–5. doi: 10.1109/vtc2023-fall60731.2023.10333488. [14] ZHANG Qixun, SUN Hongzhuo, GAO Xinye, et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2206–2218. doi: 10.1109/jsac.2022.3155506. [15] LIU Zechen, LIU Xin, LIU Yuemin, et al. UAV assisted integrated sensing and communications for internet of things: 3D trajectory optimization and resource allocation[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8654–8667. doi: 10.1109/twc.2024.3352985. [16] QIN Yunhui, ZHANG Zhongshan, LI Xulong, et al. Deep reinforcement learning based resource allocation and trajectory planning in integrated sensing and communications UAV network[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8158–8169. doi: 10.1109/twc.2023.3260304. [17] MENG Kaitao, HE Xiaofan, WU Qingqing, et al. Multi-UAV collaborative sensing and communication: Joint task allocation and power optimization[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 4232–4246. doi: 10.1109/twc.2022.3224143. [18] CUI Zhichao, HU Jing, CHENG Jian, et al. Multi-domain NOMA for ISAC: Utilizing the DOF in the delay-Doppler domain[J]. IEEE Communications Letters, 2023, 27(2): 726–730. doi: 10.1109/lcomm.2022.3228873. [19] DENG Cailian, FANG Xuming, and WANG Xianbin. Beamforming design and trajectory optimization for UAV-empowered adaptable integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8512–8526. doi: 10.1109/twc.2023.3264523. [20] WU Jun, YUAN Weijie, and HANZO L. When UAVs meet ISAC: Real-time trajectory design for secure communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16766–16771. doi: 10.1109/tvt.2023.3290033. [21] MAO Weihao, LU Yang, PAN Gaofeng, et al. UAV-assisted communications in SAGIN-ISAC: Mobile user tracking and robust beamforming[J]. IEEE Journal on Selected Areas in Communications, 2025, 43(1): 186–200. doi: 10.1109/jsac.2024.3460065. [22] 吴韵怡, 刘晨熙, 蔡昌俊, 等. 面向6G智能协作感知的无人机通信系统[J]. 移动通信, 2023, 47(9): 77–83. doi: 10.3969/j.issn.1006-1010.20230909-0001.WU Yunyi, LIU Chenxi, CAI Changjun, et al. Towards intelligent cooperative sensing in 6G UAV communication systems[J]. Mobile Communications, 2023, 47(9): 77–83. doi: 10.3969/j.issn.1006-1010.20230909-0001. [23] KLAUTAU A, GONZALEZ-PRELCIC N, and HEATH R W. LIDAR data for deep learning-based mmWave beam-selection[J]. IEEE Wireless Communications Letters, 2019, 8(3): 909–912. doi: 10.1109/lwc.2019.2899571. [24] YAO Peng and WEI Xin. Multi-UAV information fusion and cooperative trajectory optimization in target search[J]. IEEE Systems Journal, 2022, 16(3): 4325–4333. doi: 10.1109/jsyst.2021.3117959. [25] LU Bohao, WEI Zhiqing, WU Huici, et al. Deep-learning-based multinode ISAC 4D environmental reconstruction with uplink-downlink cooperation[J]. IEEE Internet of Things Journal, 2024, 11(24): 39512–39526. doi: 10.1109/jiot.2024.3443648. [26] IMT-2020(5G)推进组. 5G-Advanced通感融合空口技术方案研究报告[R]. 2024.IMT-2020(5G) Promotion Group. Research report on 5G-advanced integrated sensing and communication air interface technology[R]. 2024. [27] IMT-2020(5G)推进组. 5G-Advanced通感融合网络架构研究报告[R]. 2版. 2024.IMT-2020(5G) Promotion Group. Research report on 5G-advanced integrated sensing and communication air interface technology[R]. 2nd ed. 2024. [28] International Telecommunication Union. Recommendation ITU-R M. 2160 Framework and overall objectives of the future development of IMT for 2030 and beyond[S]. Geneva: International Telecommunication Union, 2023. [29] KAUSHIK A, SINGH R, DAYARATHNA S, et al. Towards integrated sensing and communications for 6G: A standardization perspective[J]. arXiv: 2308.01227, 2023. doi: 10.48550/arXiv.2308.01227. [30] ZHANG Yuxiang, ZHANG Jianhua, PEI Yuanpeng, et al. Latest progress for 3GPP ISAC channel modeling standardization[J]. Science China Information Sciences, 2024, 67(11): 217301. doi: 10.1007/s11432-024-4172-8. [31] MORO S, MANZONI M, LINSALATA F, et al. ISAC technology in action: UAV-based SAR imaging potential[C]. 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 6550–6554. doi: 10.1109/igarss53475.2024.10642814. [32] JING Xiaoye, LIU Fan, MASOUROS C, et al. ISAC from the sky: UAV trajectory design for joint communication and target localization[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 12857–12872. doi: 10.1109/twc.2024.3396571. [33] XU Wenbo, WANG Shu, YAN Shu, et al. An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1768–1780. doi: 10.1109/jiot.2018.2882532. [34] 孙铭然, 黄子蔚, 白露, 等. 基于感知图像信息的无人机信道路径损耗预测[J]. 模式识别与人工智能, 2023, 36(11): 987–996. doi: 10.16451/j.cnki.issn1003-6059.202311002.SUN Mingran, HUANG Ziwei, BAI Lu, et al. Sensing image data based unmanned aerial vehicle channel path loss prediction[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(11): 987–996. doi: 10.16451/j.cnki.issn1003-6059.202311002. [35] LIU Dingtao, GAO Yuan, HU Shuyan, et al. Trajectory design for integrated sensing and communication enabled by cellular-connected UAV[J]. IEEE Wireless Communications Letters, 2024, 13(7): 1973–1977. doi: 10.1109/lwc.2024.3399268. [36] 于宝泉, 杨炜伟, 王权, 等. 无人机辅助通感一体化系统中的信息年龄分析优化[J]. 电子与信息学报, 2024, 46(5): 1996–2003. doi: 10.11999/JEIT231175.YU Baoquan, YANG Weiwei, WANG Quan, et al. Age of information analysis and optimization in unmanned aerial vehicles-assisted integrated sensing and communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1996–2003. doi: 10.11999/JEIT231175. [37] YANG Zheyuan, BI Suzhi, and ZHANG Y J A. Dynamic offloading and trajectory control for UAV-enabled mobile edge computing system with energy harvesting devices[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10515–10528. doi: 10.1109/twc.2022.3184953. [38] 赵川斌, 罗宏亮, 高飞飞. 基站对低空无人机通感算一体化应用组网研究[J]. 移动通信, 2024, 48(9): 57–63,70. doi: 10.3969/j.issn.1006-1010.20240511-0001.ZHAO Chuanbin, LUO Hongliang, and GAO Feifei. Integrated sensing, communication, and computing for low-altitude UAV networks: A base station-centric approach[J]. Mobile Communications, 2024, 48(9): 57–63,70. doi: 10.3969/j.issn.1006-1010.20240511-0001. [39] 柳学斌, 李翰山. 基于数据分析算法的多目标覆盖无人机网络布局方法研究[J]. 激光与红外, 2023, 53(9): 1388–1392. doi: 10.3969/j.issn.1001-5078.2023.09.013.LIU Xuebin and LI Hanshan. Research on multi-target coverage UAV network layout method based on data analysis algorithm[J]. Laser & Infrared, 2023, 53(9): 1388–1392. doi: 10.3969/j.issn.1001-5078.2023.09.013. [40] LU Xi, WEI Zhiqing, XU Ruizhong, et al. Integrated sensing and communication enabled multiple base stations cooperative UAV detection[C]. 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, USA, 2024: 1882–1887. doi: 10.1109/iccworkshops59551.2024.10615952. [41] WEI Zhiqing, XU Ruizhong, FENG Zhiyong, et al. Symbol-level integrated sensing and communication enabled multiple base stations cooperative sensing[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 724–738. doi: 10.1109/tvt.2023.3304856. [42] XIE Zhanyuan, WANG Ziyuan, ZHANG Zekai, et al. Distributed UAV swarm for device-free integrated sensing and communication relying on multi-agent reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 19925–19930. doi: 10.1109/tvt.2024.3438854. [43] ZHANG Yinan, WANG Guangxue, PENG Shirui, et al. Near-field beamforming algorithms for UAVs[J]. Sensors, 2023, 23(13): 6172. doi: 10.3390/s23136172. [44] ZHU Botao, BEDEER E, NGUYEN H H, et al. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9540–9554. doi: 10.1109/tvt.2021.3102161. [45] ZHANG Ruizhi, ZHANG Ying, TANG Rui, et al. A joint UAV trajectory, user association, and beamforming design strategy for multi-UAV-assisted ISAC systems[J]. IEEE Internet of Things Journal, 2024, 11(18): 29360–29374. doi: 10.1109/JIOT.2024.3430390. [46] LUO Jihao, FEI Zesong, WANG Xinyi, et al. GNN-based resource allocation for digital twin-enhanced multi-UAV radar networks[J]. IEEE Wireless Communications Letters, 2024, 13(11): 3137–3141. doi: 10.1109/lwc.2024.3456247. [47] YANG Xiaoyu, WEI Zhiqing, LIU Yuanwei, et al. RIS-assisted cooperative multicell ISAC systems: A multi-user and multi-target case[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8683–8699. doi: 10.1109/twc.2024.3353336. [48] XIAO Meng, CUI Huanxi, ZHAO Zhongliang, et al. Joint 3D deployment and beamforming for RSMA-enabled UAV base station with geographic information[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 2547–2559. doi: 10.1109/twc.2023.3299650. -