高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机使能的通信感知一体化组网与技术研究综述

胡杨林 张天魁 李博 杨鼎成

胡杨林, 张天魁, 李博, 杨鼎成. 无人机使能的通信感知一体化组网与技术研究综述[J]. 电子与信息学报, 2025, 47(4): 859-875. doi: 10.11999/JEIT241116
引用本文: 胡杨林, 张天魁, 李博, 杨鼎成. 无人机使能的通信感知一体化组网与技术研究综述[J]. 电子与信息学报, 2025, 47(4): 859-875. doi: 10.11999/JEIT241116
HU Yanglin, ZHANG Tiankui, LI Bo, YANG Dingcheng. A Survey on UAV-Enabled Integrated Sensing and Communication Networking and Technologies[J]. Journal of Electronics & Information Technology, 2025, 47(4): 859-875. doi: 10.11999/JEIT241116
Citation: HU Yanglin, ZHANG Tiankui, LI Bo, YANG Dingcheng. A Survey on UAV-Enabled Integrated Sensing and Communication Networking and Technologies[J]. Journal of Electronics & Information Technology, 2025, 47(4): 859-875. doi: 10.11999/JEIT241116

无人机使能的通信感知一体化组网与技术研究综述

doi: 10.11999/JEIT241116
基金项目: 国家自然科学基金(62371068)
详细信息
    作者简介:

    胡杨林:男,博士生,研究方向为通感一体化技术、通感算一体化网络、无人机通信网络

    张天魁:男,教授,研究方向为移动算力网络、无人机通信网络、移动边缘协同计算、未来网络融合与管理、大规模天线与协作通信等

    李博:男,教授,研究方向为无人机通信网络、通感一体化、卫星通信等

    杨鼎成:男,教授,研究方向为低空智联网、移动物联网、无线通信网络规划与优化等

    通讯作者:

    张天魁 zhangtiankui@bupt.edu.cn

  • 中图分类号: TN92

A Survey on UAV-Enabled Integrated Sensing and Communication Networking and Technologies

Funds: The National Natural Science Foundation of China (62371068)
  • 摘要: 无人机(UAV)凭借灵活部署和高移动性,在通信感知一体化(ISAC)技术的推动下,展现出广阔的应用前景。该文系统地综述了无人机使能的ISAC组网与关键技术的研究进展。首先,概述了ISAC技术的原理与特点。其次,针对感知辅助通信任务的应用场景,探讨了ISAC设备在无人机与地面基站中部署的不同组网结构及其优势;针对通感融合任务的应用场景,分析了无人机在定位、边缘计算与缓存等面向通感融合任务中的组网模式及关键作用。此外,从感知使能技术和资源分配技术两个维度,总结了无人机使能的ISAC关键技术发展现状。最后,针对无人机面临的能量受限、复杂传播环境、地理环境和网络安全性等挑战,探讨了无人机与无线携能、可重构智能表面、地理信息辅助及隐蔽通信等技术的融合进展,为未来智慧城市、地理测绘、应急救援等新兴低空经济场景提供技术路径与研究方向。
  • 图  1  通感一体化波形资源分配场景

    图  2  多模感知与通信一体化场景

    图  3  无人机通信网络示意图

    图  4  通感无人机定位场景

    图  5  通感无人机缓存计算场景

    图  6  通感地面基站辅助无人机应用场景

    表  1  通感一体化网络中的波形设计分类

    面向感知功能的
    波形设计
    面向通信功能的
    波形设计
    通信感知统一的波形设计
    面向正交资源分配的ISAC设计 统一的ISAC设计
    时分ISAC波形设计 频分ISAC波形设计 空分ISAC波形设计
    文献[10] 文献[11] 文献[1215] 文献[16] 文献[17] 文献[12, 1821]
    下载: 导出CSV

    表  2  面向感知辅助通信任务的无人机通感一体化组网分类

    无人机功能 一体化波形方案 网络部署特点 主要优化目标 参考文献
    通信基站 时分波形 允许感知和通信在时间上交替进行 最大化用户通信速率 [12]
    通信终端 蜂窝信号 使用蜂窝基站信号测距无人机 预测并补偿时钟同步偏差 [13]
    通信基站 时分波形 允许无人机在通信过程中根据实际需求灵活配置感知时间 最大化平均系统吞吐量 [19]
    通信基站 统一的波形设计 利用无人机高移动性特点提高基站服务的安全性 最大化基站实时保密率与合法用户通信速率 [20]
    通信基站 时分波形设计 结合天地空地综合网络与卫星信息辅助 最大化系统能量效率 [21]
    频谱感知 频分波形 使用认知无线电的压缩感知技术 最大化占用子信道检测概率 [33]
    信道估计 / 深度融合无人机飞行仿真与实际场景 最小化信道路径损耗误差 [34]
    通信终端 蜂窝信号 无人机记录无线下行信号反射并反馈基站 最小化系统能耗 [35]
    下载: 导出CSV

    表  3  面向通感融合任务的无人机使能通感一体化组网分类

    无人机功能 一体化波形方案 网络部署特点 主要优化目标 参考文献
    定位/边缘缓存节点 频分波形 定位信号自发自收/多播技术和多天线结合
    完成内容交付与感知
    最大化雷达接收功率与通信速率组合的效用函数 [7]
    定位 无蜂窝通信信号 定位信号自发它收/基于无蜂窝网络架构实现ISAC 最小化感知目标位置的克拉美罗下界 [11]
    定位 时分波形 定位信号自发它收/使用毫米波进行协作感知 最小化响应时间延迟 [14]
    数据采集/边缘缓存节点 时分波形 考虑无人机传感与通信之间的相互干扰 最大化雷达估计速率 [15]
    定位 频分波形 定位信号它发自收自发自收/考虑多无人机与
    多用户关联问题
    最大化无人机间最小加权频谱效率 [16]
    定位 时分波形 定位信号自发自收/多无人机重叠分配相同任务 最小化整体感知任务完成时间 [17]
    定位 时分波形 定位信号自发自收/感知持续时间根据应用
    需求灵活配置
    最大化平均系统吞吐量 [19]
    定位 蜂窝信号 定位信号它发自收/无人机和基站形成双基地
    合成孔径雷达进行感知
    最小化系统能耗 [35]
    目标监测 统一的波形设计 考虑无人机感知信息对于控制中心的滞后性 最小化系统的平均峰值AoI [36]
    边缘计算节点 时分波形 无人机携能供给用户 最大化无人机能量效率和任务处理速率 [37]
    终端应用 时分/空分波形 多基站协同组网模式辅助无人机终端应用 / [38]
    下载: 导出CSV
  • [1] 中国电信集团有限公司, 爱立信, 诺基亚, 等. 通感一体低空网络白皮书[R]. 2024.

    China Telecom, Ericsson, Nokia, et al. The low-altitude network by integrated sensing and communication[R]. 2024.
    [2] IMT-2020(5G)推进组. 5G无人机应用白皮书[R]. 2018.

    IMT-2020 (5G) Promotion Group. White paper on 5G drone applications[R]. 2018.
    [3] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
    [4] KIM J H, LEE M C, and LEE T S. Generalized UAV deployment for UAV-assisted cellular networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 7894–7910. doi: 10.1109/twc.2023.3345839.
    [5] LIU An, HUANG Zhe, LI Min, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994–1034. doi: 10.1109/comst.2022.3149272.
    [6] ZHANG Jifa, LU Weidang, XING Chengwen, et al. Intelligent integrated sensing and communication: A survey[J]. Science China Information Sciences, 2025, 68(3): 131301. doi: 10.1007/s11432-024-4205-8.
    [7] BAYESSA G A, CHAI Rong, LIANG Chengchao, et al. Joint UAV deployment and precoder optimization for multicasting and target sensing in UAV-assisted ISAC networks[J]. IEEE Internet of Things Journal, 2024, 11(20): 33392–33405. doi: 10.1109/jiot.2024.3430371.
    [8] 王莉, 魏青, 徐连明, 等. 面向通信-导航-感知一体化的应急无人机网络低能耗部署研究[J]. 通信学报, 2022, 43(7): 1–20. doi: 10.11959/j.issn.1000-436x.2022138.

    WANG Li, WEI Qing, XU Lianming, et al. Research on low-energy-consumption deployment of emergency UAV network for integrated communication-navigating-sensing[J]. Journal on Communications, 2022, 43(7): 1–20. doi: 10.11959/j.issn.1000-436x.2022138.
    [9] CHENG Xiang, ZHANG Haotian, ZHANG Jianan, et al. Intelligent multi-modal sensing-communication integration: Synesthesia of machines[J]. IEEE Communications Surveys & Tutorials, 2024, 26(1): 258–301. doi: 10.1109/comst.2023.3336917.
    [10] CIUONZO D, DE MAIO A, FOGLIA G, et al. Intrapulse radar-embedded communications via multiobjective optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2960–2974. doi: 10.1109/taes.2015.140821.
    [11] 崔世林, 薛婉雨, 李佳珉. 基于无蜂窝通感一体化系统的无人机轨迹优化[J]. 移动通信, 2024, 48(9): 166–172. doi: 10.3969/j.issn.1006-1010.20240909-0003.

    CUI Shilin, XUE Wanyu, and LI Jiamin. UAV trajectory optimization for cellular-free integrated sensing and communication systems[J]. Mobile Communications, 2024, 48(9): 166–172. doi: 10.3969/j.issn.1006-1010.20240909-0003.
    [12] MENG Kaitao, WU Qingqing, MA Shaodan, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1211–1215. doi: 10.1109/lwc.2022.3161338.
    [13] YAO Zhiqiang, GUO Xiaona, CHEN Kang, et al. Ranging estimation and implementation with cellular signals for UAV navigation[C]. 98th IEEE Vehicular Technology Conference, Hong Kong, China, 2023: 1–5. doi: 10.1109/vtc2023-fall60731.2023.10333488.
    [14] ZHANG Qixun, SUN Hongzhuo, GAO Xinye, et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2206–2218. doi: 10.1109/jsac.2022.3155506.
    [15] LIU Zechen, LIU Xin, LIU Yuemin, et al. UAV assisted integrated sensing and communications for internet of things: 3D trajectory optimization and resource allocation[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8654–8667. doi: 10.1109/twc.2024.3352985.
    [16] QIN Yunhui, ZHANG Zhongshan, LI Xulong, et al. Deep reinforcement learning based resource allocation and trajectory planning in integrated sensing and communications UAV network[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8158–8169. doi: 10.1109/twc.2023.3260304.
    [17] MENG Kaitao, HE Xiaofan, WU Qingqing, et al. Multi-UAV collaborative sensing and communication: Joint task allocation and power optimization[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 4232–4246. doi: 10.1109/twc.2022.3224143.
    [18] CUI Zhichao, HU Jing, CHENG Jian, et al. Multi-domain NOMA for ISAC: Utilizing the DOF in the delay-Doppler domain[J]. IEEE Communications Letters, 2023, 27(2): 726–730. doi: 10.1109/lcomm.2022.3228873.
    [19] DENG Cailian, FANG Xuming, and WANG Xianbin. Beamforming design and trajectory optimization for UAV-empowered adaptable integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8512–8526. doi: 10.1109/twc.2023.3264523.
    [20] WU Jun, YUAN Weijie, and HANZO L. When UAVs meet ISAC: Real-time trajectory design for secure communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16766–16771. doi: 10.1109/tvt.2023.3290033.
    [21] MAO Weihao, LU Yang, PAN Gaofeng, et al. UAV-assisted communications in SAGIN-ISAC: Mobile user tracking and robust beamforming[J]. IEEE Journal on Selected Areas in Communications, 2025, 43(1): 186–200. doi: 10.1109/jsac.2024.3460065.
    [22] 吴韵怡, 刘晨熙, 蔡昌俊, 等. 面向6G智能协作感知的无人机通信系统[J]. 移动通信, 2023, 47(9): 77–83. doi: 10.3969/j.issn.1006-1010.20230909-0001.

    WU Yunyi, LIU Chenxi, CAI Changjun, et al. Towards intelligent cooperative sensing in 6G UAV communication systems[J]. Mobile Communications, 2023, 47(9): 77–83. doi: 10.3969/j.issn.1006-1010.20230909-0001.
    [23] KLAUTAU A, GONZALEZ-PRELCIC N, and HEATH R W. LIDAR data for deep learning-based mmWave beam-selection[J]. IEEE Wireless Communications Letters, 2019, 8(3): 909–912. doi: 10.1109/lwc.2019.2899571.
    [24] YAO Peng and WEI Xin. Multi-UAV information fusion and cooperative trajectory optimization in target search[J]. IEEE Systems Journal, 2022, 16(3): 4325–4333. doi: 10.1109/jsyst.2021.3117959.
    [25] LU Bohao, WEI Zhiqing, WU Huici, et al. Deep-learning-based multinode ISAC 4D environmental reconstruction with uplink-downlink cooperation[J]. IEEE Internet of Things Journal, 2024, 11(24): 39512–39526. doi: 10.1109/jiot.2024.3443648.
    [26] IMT-2020(5G)推进组. 5G-Advanced通感融合空口技术方案研究报告[R]. 2024.

    IMT-2020(5G) Promotion Group. Research report on 5G-advanced integrated sensing and communication air interface technology[R]. 2024.
    [27] IMT-2020(5G)推进组. 5G-Advanced通感融合网络架构研究报告[R]. 2版. 2024.

    IMT-2020(5G) Promotion Group. Research report on 5G-advanced integrated sensing and communication air interface technology[R]. 2nd ed. 2024.
    [28] International Telecommunication Union. Recommendation ITU-R M. 2160 Framework and overall objectives of the future development of IMT for 2030 and beyond[S]. Geneva: International Telecommunication Union, 2023.
    [29] KAUSHIK A, SINGH R, DAYARATHNA S, et al. Towards integrated sensing and communications for 6G: A standardization perspective[J]. arXiv: 2308.01227, 2023. doi: 10.48550/arXiv.2308.01227.
    [30] ZHANG Yuxiang, ZHANG Jianhua, PEI Yuanpeng, et al. Latest progress for 3GPP ISAC channel modeling standardization[J]. Science China Information Sciences, 2024, 67(11): 217301. doi: 10.1007/s11432-024-4172-8.
    [31] MORO S, MANZONI M, LINSALATA F, et al. ISAC technology in action: UAV-based SAR imaging potential[C]. 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 6550–6554. doi: 10.1109/igarss53475.2024.10642814.
    [32] JING Xiaoye, LIU Fan, MASOUROS C, et al. ISAC from the sky: UAV trajectory design for joint communication and target localization[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 12857–12872. doi: 10.1109/twc.2024.3396571.
    [33] XU Wenbo, WANG Shu, YAN Shu, et al. An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1768–1780. doi: 10.1109/jiot.2018.2882532.
    [34] 孙铭然, 黄子蔚, 白露, 等. 基于感知图像信息的无人机信道路径损耗预测[J]. 模式识别与人工智能, 2023, 36(11): 987–996. doi: 10.16451/j.cnki.issn1003-6059.202311002.

    SUN Mingran, HUANG Ziwei, BAI Lu, et al. Sensing image data based unmanned aerial vehicle channel path loss prediction[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(11): 987–996. doi: 10.16451/j.cnki.issn1003-6059.202311002.
    [35] LIU Dingtao, GAO Yuan, HU Shuyan, et al. Trajectory design for integrated sensing and communication enabled by cellular-connected UAV[J]. IEEE Wireless Communications Letters, 2024, 13(7): 1973–1977. doi: 10.1109/lwc.2024.3399268.
    [36] 于宝泉, 杨炜伟, 王权, 等. 无人机辅助通感一体化系统中的信息年龄分析优化[J]. 电子与信息学报, 2024, 46(5): 1996–2003. doi: 10.11999/JEIT231175.

    YU Baoquan, YANG Weiwei, WANG Quan, et al. Age of information analysis and optimization in unmanned aerial vehicles-assisted integrated sensing and communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1996–2003. doi: 10.11999/JEIT231175.
    [37] YANG Zheyuan, BI Suzhi, and ZHANG Y J A. Dynamic offloading and trajectory control for UAV-enabled mobile edge computing system with energy harvesting devices[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10515–10528. doi: 10.1109/twc.2022.3184953.
    [38] 赵川斌, 罗宏亮, 高飞飞. 基站对低空无人机通感算一体化应用组网研究[J]. 移动通信, 2024, 48(9): 57–63,70. doi: 10.3969/j.issn.1006-1010.20240511-0001.

    ZHAO Chuanbin, LUO Hongliang, and GAO Feifei. Integrated sensing, communication, and computing for low-altitude UAV networks: A base station-centric approach[J]. Mobile Communications, 2024, 48(9): 57–63,70. doi: 10.3969/j.issn.1006-1010.20240511-0001.
    [39] 柳学斌, 李翰山. 基于数据分析算法的多目标覆盖无人机网络布局方法研究[J]. 激光与红外, 2023, 53(9): 1388–1392. doi: 10.3969/j.issn.1001-5078.2023.09.013.

    LIU Xuebin and LI Hanshan. Research on multi-target coverage UAV network layout method based on data analysis algorithm[J]. Laser & Infrared, 2023, 53(9): 1388–1392. doi: 10.3969/j.issn.1001-5078.2023.09.013.
    [40] LU Xi, WEI Zhiqing, XU Ruizhong, et al. Integrated sensing and communication enabled multiple base stations cooperative UAV detection[C]. 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, USA, 2024: 1882–1887. doi: 10.1109/iccworkshops59551.2024.10615952.
    [41] WEI Zhiqing, XU Ruizhong, FENG Zhiyong, et al. Symbol-level integrated sensing and communication enabled multiple base stations cooperative sensing[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 724–738. doi: 10.1109/tvt.2023.3304856.
    [42] XIE Zhanyuan, WANG Ziyuan, ZHANG Zekai, et al. Distributed UAV swarm for device-free integrated sensing and communication relying on multi-agent reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 19925–19930. doi: 10.1109/tvt.2024.3438854.
    [43] ZHANG Yinan, WANG Guangxue, PENG Shirui, et al. Near-field beamforming algorithms for UAVs[J]. Sensors, 2023, 23(13): 6172. doi: 10.3390/s23136172.
    [44] ZHU Botao, BEDEER E, NGUYEN H H, et al. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9540–9554. doi: 10.1109/tvt.2021.3102161.
    [45] ZHANG Ruizhi, ZHANG Ying, TANG Rui, et al. A joint UAV trajectory, user association, and beamforming design strategy for multi-UAV-assisted ISAC systems[J]. IEEE Internet of Things Journal, 2024, 11(18): 29360–29374. doi: 10.1109/JIOT.2024.3430390.
    [46] LUO Jihao, FEI Zesong, WANG Xinyi, et al. GNN-based resource allocation for digital twin-enhanced multi-UAV radar networks[J]. IEEE Wireless Communications Letters, 2024, 13(11): 3137–3141. doi: 10.1109/lwc.2024.3456247.
    [47] YANG Xiaoyu, WEI Zhiqing, LIU Yuanwei, et al. RIS-assisted cooperative multicell ISAC systems: A multi-user and multi-target case[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8683–8699. doi: 10.1109/twc.2024.3353336.
    [48] XIAO Meng, CUI Huanxi, ZHAO Zhongliang, et al. Joint 3D deployment and beamforming for RSMA-enabled UAV base station with geographic information[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 2547–2559. doi: 10.1109/twc.2023.3299650.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  205
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-19
  • 修回日期:  2025-03-29
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回