高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向6G的通信感知一体化关键技术体系与硬件原型验证

赵川斌 孙红 张腾宇 罗宏亮 王禹淙 蒋玉骅 林博 高飞飞

赵川斌, 孙红, 张腾宇, 罗宏亮, 王禹淙, 蒋玉骅, 林博, 高飞飞. 面向6G的通信感知一体化关键技术体系与硬件原型验证[J]. 电子与信息学报, 2025, 47(4): 932-947. doi: 10.11999/JEIT241114
引用本文: 赵川斌, 孙红, 张腾宇, 罗宏亮, 王禹淙, 蒋玉骅, 林博, 高飞飞. 面向6G的通信感知一体化关键技术体系与硬件原型验证[J]. 电子与信息学报, 2025, 47(4): 932-947. doi: 10.11999/JEIT241114
ZHAO Chuanbin, SUN Hong, ZHANG Tengyu, LUO Hongliang, WANG Yucong, JIANG Yuhua, LIN Bo, GAO Feifei. Integrated Sensing and Communications Framework for 6G: Key Technologies and Hardware Prototype Validation[J]. Journal of Electronics & Information Technology, 2025, 47(4): 932-947. doi: 10.11999/JEIT241114
Citation: ZHAO Chuanbin, SUN Hong, ZHANG Tengyu, LUO Hongliang, WANG Yucong, JIANG Yuhua, LIN Bo, GAO Feifei. Integrated Sensing and Communications Framework for 6G: Key Technologies and Hardware Prototype Validation[J]. Journal of Electronics & Information Technology, 2025, 47(4): 932-947. doi: 10.11999/JEIT241114

面向6G的通信感知一体化关键技术体系与硬件原型验证

doi: 10.11999/JEIT241114
基金项目: 国家自然科学基金(62325107),四川省重点研发计划(2025YFHZ0022)
详细信息
    作者简介:

    赵川斌:男,高级工程师,博士生,研究方向为无线通感一体化、多模态AI感知、移动边缘计算

    孙红:女,工程师,硕士,研究方向为移动通信、网络安全和人工智能与大数据等

    张腾宇:博士生,研究方向为包括无线通信、通信感知一体化、通信硬件系统设计、雷达硬件系统设计等

    罗宏亮:博士生,研究方向为包括无线通信、通感一体化、低空智联网、阵列信号处理等

    王禹淙:博士生,研究方向为包括宽带无线通信、通信感知一体化、THz通信系统设计、雷达系统设计等

    蒋玉骅:博士生,研究方向包括电磁系数感知、通感一体化、生成式人工智能

    林博:博士生,研究方向为包括智能通信、通信大模型、AI- RAN、通信感知一体化等

    高飞飞:教授,博士生导师,研究方向为智能无线通信与感知、通感一体化、电磁感知论、具身智能等

    通讯作者:

    高飞飞 feifeigao@tsing.edu.cn

  • 中图分类号: TN929.5

Integrated Sensing and Communications Framework for 6G: Key Technologies and Hardware Prototype Validation

Funds: The National Natural Science Foundation of China (62325107), The Natural Science Foundation of Sichuan Province (2025YFHZ0022)
  • 摘要: 第6代移动通信(6G)系统将基于通信感知一体化能力获取精确的环境信息和用户状态信息,从而在保障通信业务的同时将真实物理世界复刻为数字孪生世界。该文提出一种完备的6G通感一体关键技术体系,包括静态环境重构、动态目标感知、物体材质识别3大基本能力。具体地,该文设计了基于多用户、多基站、主被动融合的静态环境重构技术,构建了多基站协同、多特征融合的动态目标感知技术,研究了基于多基站协同的电磁感知与材质识别技术。在此基础上,开发了基于射频系统级芯片上的现场可编程门阵列(RFSoC-FPGA)的通用通感一体化硬件原型平台,可在保持通信服务的同时有效重建环境地图并感知动态目标。
  • 图  1  基于多用户选择的环境重构

    图  2  基于环境地图匹配的多基站联合环境重构

    图  3  基于主被动感知结合的静态环境重构

    图  4  单基站通感系统框架及全流程感知方案示意图

    图  5  基于多站协同和多特征融合的目标精准辨识方案示意图

    图  6  单基站下材质感知方案示意图

    图  7  静态环境重构与材质识别联合原型验证平台架构

    图  8  静态环境重构和材质识别多场景实际验证

    图  9  动态目标感知原型验证平台架构

    图  10  通信感知一体化动态目标感知平台实际验证效果

    表  1  静态环境重构和材质识别联合验证平台通信感知基带、射频链路参数

    参数 参数值
    毫米波中心频率 26 GHz
    毫米波天线规模 32×1均匀线性阵列
    感知方位向分辨率 2°/波束指向
    基带链路带宽 单相410 MHz
    双相820 MHz
    感知距离向分辨率 双相820 MHz带宽下0.18 m
    毫米波感知覆盖范围 距离向覆盖范围0~30 m
    通信技术 基于OFDM的时分复用通信
    感知技术 基于OFDM的动静一体化感知
    IEEE 802.11N帧长 10 ms
    FFT点数 2 048
    调制方式 16 QAM
    物理层基带板卡系统功率 22 W
    毫米波天线射频最大发射功率
    (通道功率总和)
    3 W
    建图帧率 5 fps
    下载: 导出CSV

    表  2  动态目标感知原型验证平台通信感知基带、射频链路参数

    参数 参数值
    中心频率 5.5 GHz(sub-6G)/
    26 GHz(mmWave)
    天线规模 2T8R全数字天线(sub-6G)
    32×1均匀线性阵列(mmWave)
    基带链路带宽 双相820 MHz
    感知距离向分辨率 双相820 MHz带宽下0.18 m
    感知速度分辨率 0.42 m/s
    RD矩阵维度 64×64
    通信技术 基于OFDM的时分复用通信
    感知技术 基于OFDM的动静一体化感知
    IEEE 802.11N帧长 10 ms
    FFT点数 2 048
    调制方式 16 QAM
    物理层基带板卡系统功率 22 W
    毫米波天线射频最大发射功率
    (通道功率总和)
    3 W
    动态目标感知帧率 20 fps
    下载: 导出CSV
  • [1] 尹浩, 黄宇红, 韩林丛, 等. 6G通信-感知-计算融合网络的思考[J]. 中国科学: 信息科学, 2023, 53(9): 1838–1842. doi: 10.1360/SSI-2023-0135.

    YIN Hao, HUANG Yuhong, HAN Lincong, et al. Thoughts on 6G integrated communication, sensing and computing networks[J]. Scientia Sinica Informationis, 2023, 53(9): 1838–1842. doi: 10.1360/SSI-2023-0135.
    [2] 3GPP. Study on Integrated Sensing and Communication (Release 19)[R]. TR 22.837, 2023.
    [3] LIU Wancun, ZHANG Liguo, ZHANG Xiaolin, et al. 3D snow sculpture reconstruction based on structured-light 3D vision measurement[J]. Applied Sciences, 2021, 11(8): 3324. doi: 10.3390/APP11083324.
    [4] CHOY C B, XU Danfei, GWAK J Y, et al. 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 628–644. doi: 10.1007/978-3-319-46484-8_38.
    [5] WANG Qiaozhi, YUAN Xiaojun, XU Chongbin, et al. A Bayesian approach to communication-driven SLAM based on diffuse reflection model[J]. IEEE Wireless Communications Letters, 2023, 12(7): 1279–1283. doi: 10.1109/LWC.2023.3271321.
    [6] LEITINGER E, GREBIEN S, LI Xuhong, et al. On the use of MPC amplitude information in radio signal based slam[C]. 2018 IEEE Statistical Signal Processing Workshop, Freiburg im Breisgau, Germany, 2018: 633–637. doi: 10.1109/SSP.2018.8450734.
    [7] YANG Jie, WEN Chaokai, XU Jing, et al. Angle-based SLAM on 5G mmWave systems: Design, implementation, and measurement[J]. IEEE Internet of Things Journal, 2023, 10(20): 17755–17771. doi: 10.1109/JIOT.2023.3279287.
    [8] QUE Hang, YANG Jie, WEN Chaokai, et al. Joint beam management and SLAM for mmWave communication systems[J]. IEEE Transactions on Communications, 2023, 71(10): 6162–6179. doi: 10.1109/TCOMM.2023.3294954.
    [9] YANG Jie, WEN Chaokai, JIN Shi, et al. Enabling plug-and-play and crowdsourcing SLAM in wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1453–1468. doi: 10.1109/TWC.2021.3104006.
    [10] BARNETO C B, RIIHONEN T, LIYANAARACHCHI S D, et al. Beamformer design and optimization for joint communication and full-duplex sensing at mm-waves[J]. IEEE Transactions on Communications, 2022, 70(12): 8298–8312. doi: 10.1109/TCOMM.2022.3218623.
    [11] WANG Xinyi, FEI Zesong, ZHANG J A, et al. Partially-connected hybrid beamforming design for integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2022, 70(10): 6648–6660. doi: 10.1109/TCOMM.2022.3202215.
    [12] DU Zhen, ZHANG Zenghui, and YU Wenxian. Distributed target detection in communication interference and noise using OFDM radar[J]. IEEE Communications Letters, 2021, 25(2): 598–602. doi: 10.1109/LCOMM.2020.3026346.
    [13] WANG Shuaihu, SHEN Hong, XU Wei, et al. Clutter-aware MIMO-OFDM based target detection: Algorithm design and experimental test[C]. 2023 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2023: 402–407. doi: 10.1109/WCSP58612.2023.10404794.
    [14] ARGYRIOU A. False target detection in OFDM-based joint RADAR-communication systems[C]. 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149610.
    [15] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
    [16] CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Code-division OFDM joint communication and sensing system for 6G machine-type communication[J]. IEEE Internet of Things Journal, 2021, 8(15): 12093–12105. doi: 10.1109/JIOT.2021.3060858.
    [17] WEI Zhiqing, QU Hanyang, JIANG Wangjun, et al. Iterative signal processing for integrated sensing and communication systems[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 401–412. doi: 10.1109/TGCN.2023.3234825.
    [18] CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Multiple signal classification based joint communication and sensing system[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6504–6517. doi: 10.1109/TWC.2023.3244195.
    [19] XIANG Yang, GAO Yuxing, YANG Xinru, et al. An ESPRIT-based moving target sensing method for MIMO-OFDM ISAC systems[J]. IEEE Communications Letters, 2023, 27(12): 3205–3209. doi: 10.1109/LCOMM.2023.3325531.
    [20] LIU Fan, YUAN Weijie, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicular links: Communication served by sensing[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7704–7719. doi: 10.1109/TWC.2020.3015735.
    [21] DU Zhen, LIU Fan, YUAN Weijie, et al. Integrated sensing and communications for V2I networks: Dynamic predictive beamforming for extended vehicle targets[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 3612–3627. doi: 10.1109/TWC.2022.3219890.
    [22] HAN Zixiang, DING Haiyu, ZHANG Xiaozhou, et al. Multistatic integrated sensing and communication system in cellular networks[C]. 2023 IEEE Globecom Workshops, Kuala Lumpur, Malaysia, 2023: 123–128. DOI: 10.1109/GCWkshps58843.2023.10464728.
    [23] BAUHOFER M, MANDELLI S, HENNINGER M, et al. Multi-target localization in multi-static integrated sensing and communication deployments[C]. The 2nd International Conference on 6G Networkin, Paris, France, 2023: 1–4. DOI: 10.1109/6GNet58894.2023.10317749.
    [24] GROßMANN W, HORN H, and NIGGEMANN O. Improving remote material classification ability with thermal imagery[J]. Scientific Reports, 2022, 12(1): 17288. doi: 10.1038/S41598-022-21588-4.
    [25] MILLER J L. Principles of Infrared Technology[M]. New York: Springer, 1994.
    [26] ALKHATEEB A, JIANG Shuaifeng, and CHARAN G. Real-time digital twins: Vision and research directions for 6G and beyond[J]. IEEE Communications Magazine, 2023, 61(11): 128–134. doi: 10.1109/MCOM.001.2200866.
    [27] CUI Yuanhao, YUAN Weijie, ZHANG Zhiyue, et al. On the physical layer of digital twin: An integrated sensing and communications perspective[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(11): 3474–3490. doi: 10.1109/JSAC.2023.3314826.
    [28] KUMARI P, MEZGHANI A, and HEATH R W. JCR70: A low-complexity millimeter-wave proof-of-concept platform for a fully-digital SIMO joint communication-radar[J]. IEEE Open Journal of Vehicular Technology, 2021, 2: 218–234. doi: 10.1109/OJVT.2021.3069946.
    [29] LI Oupeng, HE Jia, ZENG Kun, et al. Integrated sensing and communication in 6G A prototype of high resolution THz sensing on portable device[C]. 2021 Joint European Conference on Networks and Communications & 6G Summit, Porto, Portugal, 2021: 544–549. DOI: 10.1109/EuCNC/6GSummit51104.2021.9482537.
    [30] LI Jie, YU Chao, LUO Yan, et al. Passive motion detection via mmWave communication system[C]. 2022 IEEE 95th Vehicular Technology Conference, Helsinki, Finland, 2022: 1–6. DOI: 10.1109/VTC2022-Spring54318.2022.9860809.
    [31] BARNETO C B, RASTORGUEVA-FOI E, KESKIN M F, et al. Millimeter-wave mobile sensing and environment mapping: Models, algorithms and validation[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3900–3916. doi: 10.1109/TVT.2022.3146003.
    [32] BARNETO C B, RIIHONEN T, TURUNEN M, et al. Radio-based sensing and indoor mapping with millimeter-wave 5G NR signals[C]. Proceedings of 2020 International Conference on Localization and GNSS, Tampere, Finland, 2020: 1–5. doi: 10.1109/ICL-GNSS49876.2020.9115568.
    [33] GUIDI F, MARIANI A, GUERRA A, et al. Indoor environment-adaptive mapping with beamsteering massive arrays[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 10139–10143. doi: 10.1109/TVT.2018.2853657.
    [34] GUIDI F, GUERRA A, and DARDARI D. Millimeter-wave massive arrays for indoor SLAM[C]. Proceedings of 2014 IEEE International Conference on Communications Workshops, Sydney, Australia, 2014: 114–120. doi: 10.1109/ICCW.2014.6881182.
    [35] GUIDI F, GUERRA A, and DARDARI D. Personal mobile radars with millimeter-wave massive arrays for indoor mapping[J]. IEEE Transactions on Mobile Computing, 2016, 15(6): 1471–1484. doi: 10.1109/TMC.2015.2467373.
    [36] GUIDI F, GUERRA A, DARDARI D, et al. Environment mapping with millimeter-wave massive arrays: System design and performance[C]. Proceedings of 2016 IEEE Globecom Workshops, Washington, USA, 2016: 1–6. DOI: 10.1109/GLOCOMW.2016.7848895.
    [37] LOTTI M, PASOLINI G, GUERRA A, et al. Radio SLAM for 6G systems at THz frequencies: Design and experimental validation[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(4): 834–849. doi: 10.1109/JSTSP.2023.3285101.
    [38] YIN Mingsheng, VELDANDA A K, TRIVEDI A, et al. Millimeter wave wireless assisted robot navigation with link state classification[J]. IEEE Open Journal of the Communications Society, 2022, 3: 493–507. doi: 10.1109/OJCOMS.2022.3155572.
    [39] MOU Zhiyu and GAO Feifei. Millimeter wave wireless communication assisted three-dimensional simultaneous localization and mapping[J]. arXiv: 2303.02617, 2023.
    [40] PALACIOS J, BIELSA G, CASARI P, et al. Communication-driven localization and mapping for millimeter wave networks[C]. Proceedings of the IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, Honolulu, USA, 2018: 2402–2410. doi: 10.1109/INFOCOM.2018.8485819.
    [41] PALACIOS J, CASARI P, and WIDMER J. JADE: Zero-knowledge device localization and environment mapping for millimeter wave systems[C]. Proceedings of the IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8057183.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  127
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-19
  • 修回日期:  2025-04-02
  • 网络出版日期:  2025-04-08
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回