[1] |
TWAROWSKI B and HERBET M. Inflammatory processes in Alzheimer's disease-pathomechanism, diagnosis and treatment: A review[J]. International Journal of Molecular Sciences, 2023, 24(7): 6518. doi: 10.3390/ijms24076518.
|
[2] |
MONTEIRO A R, BARBOSA D J, REMIÃO F, et al. Alzheimer's disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs[J]. Biochemical Pharmacology, 2023, 211: 115522. doi: 10.1016/j.bcp.2023.115522.
|
[3] |
LORENTZEN I M, ESPENES J, ELIASSEN I V, et al. Investigating the relationship between allocentric spatial working memory and biomarker status in preclinical and prodromal Alzheimer's disease[J]. Applied Neuropsychology: Adult, 2025, 32(4): 1074–1086. doi: 10.1080/23279095.2023.2236262.
|
[4] |
徐佳伟, 刘迢迢, 郑旭媛, 等. 工作记忆编码腹侧海马和内侧前额叶皮层局部场电位信号的相位同步分析[J]. 科学技术与工程, 2022, 22(13): 5170–5175. doi: 10.3969/j.issn.1671-1815.2022.13.009.XU Jiawei, LIU Tiaotiao, ZHENG Xuyuan, et al. Phase synchronization analysis of local field potentials from ventral hippocampus and medial prefrontal cortex on working memory encoding[J]. Science Technology and Engineering, 2022, 22(13): 5170–5175. doi: 10.3969/j.issn.1671-1815.2022.13.009.
|
[5] |
GAO Qiang, LEUNG A, YANG Yonghong, et al. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia[J]. Neural Regeneration Research, 2021, 16(7): 1252–1257. doi: 10.4103/1673-5374.301020.
|
[6] |
KAZEMI M, ALIYARI H, TEKIEH E, et al. The effect of 12 Hz extremely low-frequency electromagnetic field on visual memory of male macaque monkeys[J]. Basic and Clinical Neuroscience, 2022, 13(1): 1–14. doi: 10.32598/bcn.2021.724.8.
|
[7] |
KARIMI S A, SALEHI I, SHYKHI T, et al. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats[J]. Behavioural Brain Research, 2019, 359: 630–638. doi: 10.1016/j.bbr.2018.10.002.
|
[8] |
DUAN Yuqing, WANG Zhigao, ZHANG Haihui, et al. Extremely low frequency electromagnetic field exposure causes cognitive impairment associated with alteration of the glutamate level, MAPK pathway activation and decreased CREB phosphorylation in mice hippocampus: reversal by procyanidins extracted from the lotus seedpod[J]. Food & Function, 2014, 5(9): 2289–2297. doi: 10.1039/C4FO00250D.
|
[9] |
王瞳, 刘爽, 郭欣萌, 等. 综述与专论: 外源节律性脑刺激技术在精神神经类疾病治疗中的应用[J]. 生物化学与生物物理进展, 2023, 50(10): 2262–2275. doi: 10.16476/j.pibb.2023.0182.WANG Tong, LIU Shuang, GUO Xinmeng, et al. Review: Application of exogenous rhythmic neuromodulation techniques for the treatment of neuropsychiatric diseases[J]. Progress in Biochemistry and Biophysics, 2023, 50(10): 2262–2275. doi: 10.16476/j.pibb.2023.0182.
|
[10] |
KUMAR S, ZOMORRODI R, GHAZALA Z, et al. Effects of repetitive paired associative stimulation on brain plasticity and working memory in Alzheimer's disease: A pilot randomized double-blind-controlled trial[J]. International Psychogeriatrics, 2023, 35(3): 143–155. doi: 10.1017/S1041610220003518.
|
[11] |
GUO Miaomiao, WANG Tian, and ZHAI Haodi. Effects of rTMS on working memory abilities and time-varying spectrum coherence of LFPs and spikes in rats[J]. COMPEL, 2023, 42(1): 56–67. doi: 10.1108/COMPEL-01-2022-0065.
|
[12] |
WANG Tian, GUO Miaomiao, WANG Ning, et al. Effects of theta burst stimulation on the coherence of local field potential during working memory task in rats[J]. Brain Research, 2023, 1813: 148408. doi: 10.1016/j.brainres.2023.148408.
|
[13] |
LUO Xi, CHE Xianwei, and LI Hong. Concurrent TMS-EEG and EEG reveal neuroplastic and oscillatory changes associated with self-compassion and negative emotions[J]. International Journal of Clinical and Health Psychology, 2023, 23(1): 100343. doi: 10.1016/j.ijchp.2022.100343.
|
[14] |
ZHANG Cheng, LI Yue, WANG Chao, et al. Extremely low-frequency magnetic exposure appears to have no effect on pathogenesis of Alzheimer's disease in aluminum-overloaded rat[J]. PLoS One, 2013, 8(8): e71087. doi: 10.1371/journal.pone.0071087.
|
[15] |
HAN Chuanliang, ZHAO Xixi, LI Meijia, et al. Enhancement of the neural response during 40 Hz auditory entrainment in closed-eye state in human prefrontal region[J]. Cognitive Neurodynamics, 2023, 17(2): 399–410. doi: 10.1007/s11571-022-09834-x.
|
[16] |
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals[M]. 8th ed. Washington (DC): National Academies Press (US), 2011. .
|
[17] |
ABDELMOATY M M, YEAPURI P, MACHHI J, et al. Immune senescence in aged APP/PS1 mice[J]. NeuroImmune Pharmacology and Therapeutics, 2023, 2(3): 317–330. doi: 10.1515/nipt-2023-0015.
|
[18] |
ALEKSEICHUK I, MANTELL K, SHIRINPOUR S, et al. Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human[J]. Neuroimage, 2019, 194: 136–148. doi: 10.1016/j.neuroimage.2019.03.044.
|
[19] |
ALEKSEICHUK I, TURI Z, AMADOR DE LARA G, et al. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex[J]. Current Biology, 2016, 26(12): 1513–1521. doi: 10.1016/j.cub.2016.04.035.
|
[20] |
TZILIVAKI A, TUKKER J J, MAIER N, et al. Hippocampal GABAergic interneurons and memory[J]. Neuron, 2023, 111(20): 3154–3175. doi: 10.1016/j.neuron.2023.06.016.
|
[21] |
KARAT B G, KÖHLER S, and KHAN A R. Diffusion MRI of the hippocampus[J]. The Journal of Neuroscience, 2024, 44(23): e1705232024. doi: 10.1523/JNEUROSCI.1705-23.
|
[22] |
NASB M, TAO Weichu, and CHEN Ning. Alzheimer's disease puzzle: Delving into pathogenesis hypotheses[J]. Aging and Disease, 2024, 15(1): 43–73. doi: 10.14336/AD.2023.0608.
|
[23] |
VOLLOCH V and RITS-VOLLOCH S. ACH2.0/E, the consolidated theory of conventional and unconventional Alzheimer's disease: Origins, progression, and therapeutic strategies[J]. International Journal of Molecular Sciences, 2024, 25(11): 6036. doi: 10.3390/ijms25116036.
|
[24] |
WANG Yiying, ZHOU Yuning, JIANG Lin, et al. Long-term voluntary exercise inhibited AGE/RAGE and microglial activation and reduced the loss of dendritic spines in the hippocampi of APP/PS1 transgenic mice[J]. Experimental Neurology, 2023, 363: 114371. doi: 10.1016/j.expneurol.2023.114371.
|
[25] |
MIAN M, TAHIRI J, ELDIN R, et al. Overlooked cases of mild cognitive impairment: Implications to early Alzheimer's disease[J]. Ageing Research Reviews, 2024, 98: 102335. doi: 10.1016/j.arr.2024.102335.
|
[26] |
DE VITA D, SAGLIANO L, and TROJANO L. Memory biases in Alzheimer's disease and mild cognitive impairment. A systematic review and metanalysis[J]. Neuroscience & Biobehavioral Reviews, 2023, 152: 105277. doi: 10.1016/j.neubiorev.2023.105277.
|
[27] |
BIVONA G, IEMMOLO M, and GHERSI G. Cerebrospinal and blood biomarkers in Alzheimer's disease: Did mild cognitive impairment definition affect their clinical usefulness?[J]. International Journal of Molecular Sciences, 2023, 24(23): 16908. doi: 10.3390/ijms242316908.
|
[28] |
TĂUƫAN A M, CASULA E P, PELLICCIARI M C, et al. TMS-EEG perturbation biomarkers for Alzheimer's disease patients classification[J]. Scientific Reports, 2023, 13(1): 7667. doi: 10.1038/s41598-022-22978-4.
|
[29] |
LIN Hua, LIANG Jinhua, WANG Qianqian, et al. Effects of accelerated intermittent theta-burst stimulation in modulating brain of Alzheimer's disease[J]. Cerebral Cortex, 2024, 34(3): bhae106. doi: 10.1093/cercor/bhae106.
|
[30] |
JUNG Y H, JANG H, PARK S, et al. Effectiveness of personalized hippocampal network-targeted stimulation in Alzheimer disease: A randomized clinical trial[J]. JAMA Network Open, 2024, 7(5): e249220. doi: 10.1001/jamanetworkopen.2024.9220.
|
[31] |
LUO Yuncin, YANG Fengyi, and LO R Y. Application of transcranial brain stimulation in dementia[J]. Tzu Chi Medical Journal, 2023, 35(4): 300–305. doi: 10.4103/tcmj.tcmj_91_23.
|
[32] |
SOLOMON E A, WANG J B, OYA H, et al. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites[J]. Brain Stimulation, 2024, 17(3): 698–712. doi: 10.1016/j.brs.2024.05.014.
|
[33] |
HERNANDEZ-PAVON J C, SAN AGUSTÍN A, WANG M C, et al. Can we manipulate brain connectivity? A systematic review of cortico-cortical paired associative stimulation effects[J]. Clinical Neurophysiology, 2023, 154: 169–193. doi: 10.1016/j.clinph.2023.06.016.
|
[34] |
ZHANG Cheng, LI Yue, WANG Chao, et al. Extremely low-frequency magnetic exposure appears to have no effect on pathogenesis of Alzheimer's disease in aluminum-overloaded rat[J]. PLoS One, 2013, 8(8): e71087. doi: 10.1371/journal.pone.0071087. (查阅网上资料,本条文献与第14条文献重复,请确认).
|
[35] |
FOROOZANDEH E, AHADI H, ASKARI P, et al. Effects of 90min exposure to 8mt electromagnetic fields on memory in mice[J]. Journal of American Science, 2011, 7(7): 58–62.
|
[36] |
FOROOZANDEH E, DERAKHSHAN-BARJOEI P, and JADIDI M. Toxic effects of 50 Hz electromagnetic field on memory consolidation in male and female mice[J]. Toxicology and Industrial Health, 2013, 29(3): 293–299. doi: 10.1177/0748233711433931.
|
[37] |
CICHOŃ N, BIJAK M, MILLER E, et al. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients[J]. Bioelectromagnetics, 2017, 38(5): 386–396. doi: 10.1002/bem.22055.
|
[38] |
TERANISHI M, ITO M, HUANG Zhizhou, et al. Extremely low-frequency electromagnetic field (ELF-EMF) increases mitochondrial electron transport chain activities and ameliorates depressive behaviors in mice[J]. International Journal of Molecular Sciences, 2024, 25(20): 11315. doi: 10.3390/ijms252011315.
|
[39] |
MANCZAK M, CALKINS M J, and REDDY P H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: Implications for neuronal damage[J]. Human Molecular Genetics, 2011, 20(13): 2495–2509. doi: 10.1093/hmg/ddr139.
|
[40] |
REDDY P H. Inhibitors of mitochondrial fission as a therapeutic strategy for diseases with oxidative stress and mitochondrial dysfunction[J]. Journal of Alzheimer's Disease, 2014, 40(2): 245–256. doi: 10.3233/JAD-132060.
|