高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ELF-MF对AD小鼠Aβ42沉积及SWM相关神经振荡的影响

耿读艳 刘澳格 闫禹新 郑卫然

耿读艳, 刘澳格, 闫禹新, 郑卫然. ELF-MF对AD小鼠Aβ42沉积及SWM相关神经振荡的影响[J]. 电子与信息学报. doi: 10.11999/JEIT241106
引用本文: 耿读艳, 刘澳格, 闫禹新, 郑卫然. ELF-MF对AD小鼠Aβ42沉积及SWM相关神经振荡的影响[J]. 电子与信息学报. doi: 10.11999/JEIT241106
GENG Duyan, LIU Aoge, YAN Yuxin, ZHENG Weiran. The effects of ELF-MF on Aβ42 deposition in AD mice and SWM-related neural oscillations[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241106
Citation: GENG Duyan, LIU Aoge, YAN Yuxin, ZHENG Weiran. The effects of ELF-MF on Aβ42 deposition in AD mice and SWM-related neural oscillations[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241106

ELF-MF对AD小鼠Aβ42沉积及SWM相关神经振荡的影响

doi: 10.11999/JEIT241106 cstr: 32379.14.JEIT241106
基金项目: 国家自然科学基金(No.52277230)
详细信息
    作者简介:

    耿读艳:男,博士,教授,研究方向为生物电磁技术

    刘澳格:女,硕究生,研究方向为生物电磁与神经调控

    闫禹新:男,研究生,研究方向为脑认知与神经工程

    郑卫然:男,博士生,研究方向为生物电磁与神经调控

    通讯作者:

    耿读艳 dygeng@hebut.edu.cn

  • 中图分类号: TN911.7; R318; R338

The effects of ELF-MF on Aβ42 deposition in AD mice and SWM-related neural oscillations

Funds: The National Natural Science Foundation of China (52277230)
  • 摘要: 极低频磁场(ELF-MF)已被证实可以对多种常见疾病产生积极影响,但其对阿尔茨海默病(AD)的影响仍然知之甚少。该文将免疫荧光检测、行为学和电生理学相结合,通过计算完成对象位置任务(OLT)的行为认知指数(CI),探究ELF-MF暴露对小鼠空间工作记忆(SWM)的影响;应用时频分布和相位-幅值耦合分析方法,探究小鼠进行OLT过程中海马CA1区局部场电位信号(LFPs)的theta频段和gamma频段神经振荡的变化规律;进一步通过免疫荧光技术定量分析了小鼠海马区域Aβ42的沉积情况,探究ELF-MF暴露对AD病理标志物的影响。此外,还分析了CI与海马CA1区theta频段和gamma频段神经振荡的时频分布及相位-幅值耦合之间的相关性,旨在探究ELF-MF对认知功能和神经振荡模式的调控机制。结果表明,ELF-MF可以减少AD小鼠海马区Aβ42含量,增强AD模型小鼠的SWM能力,且这种增强与小鼠SWM任务期间海马CA1区theta和gamma频段神经振荡的时频能量以及theta-gamma相位-幅值耦合增强有关。
  • 图  1  ELF-MF刺激仪及电场仿真图

    图  2  OLT实验

    图  3  42免疫荧光及面积百分比图

    图  4  平均CI(%)

    图  5  Theta频段

    图  6  Gamma频段

    图  7  Theta-Gamma相位-幅值耦合

    图  8  相关性散点图

  • [1] TWAROWSKI B and HERBET M. Inflammatory processes in Alzheimer's disease-pathomechanism, diagnosis and treatment: A review[J]. International Journal of Molecular Sciences, 2023, 24(7): 6518. doi: 10.3390/ijms24076518.
    [2] MONTEIRO A R, BARBOSA D J, REMIÃO F, et al. Alzheimer's disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs[J]. Biochemical Pharmacology, 2023, 211: 115522. doi: 10.1016/j.bcp.2023.115522.
    [3] LORENTZEN I M, ESPENES J, ELIASSEN I V, et al. Investigating the relationship between allocentric spatial working memory and biomarker status in preclinical and prodromal Alzheimer's disease[J]. Applied Neuropsychology: Adult, 2025, 32(4): 1074–1086. doi: 10.1080/23279095.2023.2236262.
    [4] 徐佳伟, 刘迢迢, 郑旭媛, 等. 工作记忆编码腹侧海马和内侧前额叶皮层局部场电位信号的相位同步分析[J]. 科学技术与工程, 2022, 22(13): 5170–5175. doi: 10.3969/j.issn.1671-1815.2022.13.009.

    XU Jiawei, LIU Tiaotiao, ZHENG Xuyuan, et al. Phase synchronization analysis of local field potentials from ventral hippocampus and medial prefrontal cortex on working memory encoding[J]. Science Technology and Engineering, 2022, 22(13): 5170–5175. doi: 10.3969/j.issn.1671-1815.2022.13.009.
    [5] GAO Qiang, LEUNG A, YANG Yonghong, et al. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia[J]. Neural Regeneration Research, 2021, 16(7): 1252–1257. doi: 10.4103/1673-5374.301020.
    [6] KAZEMI M, ALIYARI H, TEKIEH E, et al. The effect of 12 Hz extremely low-frequency electromagnetic field on visual memory of male macaque monkeys[J]. Basic and Clinical Neuroscience, 2022, 13(1): 1–14. doi: 10.32598/bcn.2021.724.8.
    [7] KARIMI S A, SALEHI I, SHYKHI T, et al. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats[J]. Behavioural Brain Research, 2019, 359: 630–638. doi: 10.1016/j.bbr.2018.10.002.
    [8] DUAN Yuqing, WANG Zhigao, ZHANG Haihui, et al. Extremely low frequency electromagnetic field exposure causes cognitive impairment associated with alteration of the glutamate level, MAPK pathway activation and decreased CREB phosphorylation in mice hippocampus: reversal by procyanidins extracted from the lotus seedpod[J]. Food & Function, 2014, 5(9): 2289–2297. doi: 10.1039/C4FO00250D.
    [9] 王瞳, 刘爽, 郭欣萌, 等. 综述与专论: 外源节律性脑刺激技术在精神神经类疾病治疗中的应用[J]. 生物化学与生物物理进展, 2023, 50(10): 2262–2275. doi: 10.16476/j.pibb.2023.0182.

    WANG Tong, LIU Shuang, GUO Xinmeng, et al. Review: Application of exogenous rhythmic neuromodulation techniques for the treatment of neuropsychiatric diseases[J]. Progress in Biochemistry and Biophysics, 2023, 50(10): 2262–2275. doi: 10.16476/j.pibb.2023.0182.
    [10] KUMAR S, ZOMORRODI R, GHAZALA Z, et al. Effects of repetitive paired associative stimulation on brain plasticity and working memory in Alzheimer's disease: A pilot randomized double-blind-controlled trial[J]. International Psychogeriatrics, 2023, 35(3): 143–155. doi: 10.1017/S1041610220003518.
    [11] GUO Miaomiao, WANG Tian, and ZHAI Haodi. Effects of rTMS on working memory abilities and time-varying spectrum coherence of LFPs and spikes in rats[J]. COMPEL, 2023, 42(1): 56–67. doi: 10.1108/COMPEL-01-2022-0065.
    [12] WANG Tian, GUO Miaomiao, WANG Ning, et al. Effects of theta burst stimulation on the coherence of local field potential during working memory task in rats[J]. Brain Research, 2023, 1813: 148408. doi: 10.1016/j.brainres.2023.148408.
    [13] LUO Xi, CHE Xianwei, and LI Hong. Concurrent TMS-EEG and EEG reveal neuroplastic and oscillatory changes associated with self-compassion and negative emotions[J]. International Journal of Clinical and Health Psychology, 2023, 23(1): 100343. doi: 10.1016/j.ijchp.2022.100343.
    [14] ZHANG Cheng, LI Yue, WANG Chao, et al. Extremely low-frequency magnetic exposure appears to have no effect on pathogenesis of Alzheimer's disease in aluminum-overloaded rat[J]. PLoS One, 2013, 8(8): e71087. doi: 10.1371/journal.pone.0071087.
    [15] HAN Chuanliang, ZHAO Xixi, LI Meijia, et al. Enhancement of the neural response during 40 Hz auditory entrainment in closed-eye state in human prefrontal region[J]. Cognitive Neurodynamics, 2023, 17(2): 399–410. doi: 10.1007/s11571-022-09834-x.
    [16] National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals[M]. 8th ed. Washington (DC): National Academies Press (US), 2011. .
    [17] ABDELMOATY M M, YEAPURI P, MACHHI J, et al. Immune senescence in aged APP/PS1 mice[J]. NeuroImmune Pharmacology and Therapeutics, 2023, 2(3): 317–330. doi: 10.1515/nipt-2023-0015.
    [18] ALEKSEICHUK I, MANTELL K, SHIRINPOUR S, et al. Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human[J]. Neuroimage, 2019, 194: 136–148. doi: 10.1016/j.neuroimage.2019.03.044.
    [19] ALEKSEICHUK I, TURI Z, AMADOR DE LARA G, et al. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex[J]. Current Biology, 2016, 26(12): 1513–1521. doi: 10.1016/j.cub.2016.04.035.
    [20] TZILIVAKI A, TUKKER J J, MAIER N, et al. Hippocampal GABAergic interneurons and memory[J]. Neuron, 2023, 111(20): 3154–3175. doi: 10.1016/j.neuron.2023.06.016.
    [21] KARAT B G, KÖHLER S, and KHAN A R. Diffusion MRI of the hippocampus[J]. The Journal of Neuroscience, 2024, 44(23): e1705232024. doi: 10.1523/JNEUROSCI.1705-23.
    [22] NASB M, TAO Weichu, and CHEN Ning. Alzheimer's disease puzzle: Delving into pathogenesis hypotheses[J]. Aging and Disease, 2024, 15(1): 43–73. doi: 10.14336/AD.2023.0608.
    [23] VOLLOCH V and RITS-VOLLOCH S. ACH2.0/E, the consolidated theory of conventional and unconventional Alzheimer's disease: Origins, progression, and therapeutic strategies[J]. International Journal of Molecular Sciences, 2024, 25(11): 6036. doi: 10.3390/ijms25116036.
    [24] WANG Yiying, ZHOU Yuning, JIANG Lin, et al. Long-term voluntary exercise inhibited AGE/RAGE and microglial activation and reduced the loss of dendritic spines in the hippocampi of APP/PS1 transgenic mice[J]. Experimental Neurology, 2023, 363: 114371. doi: 10.1016/j.expneurol.2023.114371.
    [25] MIAN M, TAHIRI J, ELDIN R, et al. Overlooked cases of mild cognitive impairment: Implications to early Alzheimer's disease[J]. Ageing Research Reviews, 2024, 98: 102335. doi: 10.1016/j.arr.2024.102335.
    [26] DE VITA D, SAGLIANO L, and TROJANO L. Memory biases in Alzheimer's disease and mild cognitive impairment. A systematic review and metanalysis[J]. Neuroscience & Biobehavioral Reviews, 2023, 152: 105277. doi: 10.1016/j.neubiorev.2023.105277.
    [27] BIVONA G, IEMMOLO M, and GHERSI G. Cerebrospinal and blood biomarkers in Alzheimer's disease: Did mild cognitive impairment definition affect their clinical usefulness?[J]. International Journal of Molecular Sciences, 2023, 24(23): 16908. doi: 10.3390/ijms242316908.
    [28] TĂUƫAN A M, CASULA E P, PELLICCIARI M C, et al. TMS-EEG perturbation biomarkers for Alzheimer's disease patients classification[J]. Scientific Reports, 2023, 13(1): 7667. doi: 10.1038/s41598-022-22978-4.
    [29] LIN Hua, LIANG Jinhua, WANG Qianqian, et al. Effects of accelerated intermittent theta-burst stimulation in modulating brain of Alzheimer's disease[J]. Cerebral Cortex, 2024, 34(3): bhae106. doi: 10.1093/cercor/bhae106.
    [30] JUNG Y H, JANG H, PARK S, et al. Effectiveness of personalized hippocampal network-targeted stimulation in Alzheimer disease: A randomized clinical trial[J]. JAMA Network Open, 2024, 7(5): e249220. doi: 10.1001/jamanetworkopen.2024.9220.
    [31] LUO Yuncin, YANG Fengyi, and LO R Y. Application of transcranial brain stimulation in dementia[J]. Tzu Chi Medical Journal, 2023, 35(4): 300–305. doi: 10.4103/tcmj.tcmj_91_23.
    [32] SOLOMON E A, WANG J B, OYA H, et al. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites[J]. Brain Stimulation, 2024, 17(3): 698–712. doi: 10.1016/j.brs.2024.05.014.
    [33] HERNANDEZ-PAVON J C, SAN AGUSTÍN A, WANG M C, et al. Can we manipulate brain connectivity? A systematic review of cortico-cortical paired associative stimulation effects[J]. Clinical Neurophysiology, 2023, 154: 169–193. doi: 10.1016/j.clinph.2023.06.016.
    [34] ZHANG Cheng, LI Yue, WANG Chao, et al. Extremely low-frequency magnetic exposure appears to have no effect on pathogenesis of Alzheimer's disease in aluminum-overloaded rat[J]. PLoS One, 2013, 8(8): e71087. doi: 10.1371/journal.pone.0071087. (查阅网上资料,本条文献与第14条文献重复,请确认).
    [35] FOROOZANDEH E, AHADI H, ASKARI P, et al. Effects of 90min exposure to 8mt electromagnetic fields on memory in mice[J]. Journal of American Science, 2011, 7(7): 58–62.
    [36] FOROOZANDEH E, DERAKHSHAN-BARJOEI P, and JADIDI M. Toxic effects of 50 Hz electromagnetic field on memory consolidation in male and female mice[J]. Toxicology and Industrial Health, 2013, 29(3): 293–299. doi: 10.1177/0748233711433931.
    [37] CICHOŃ N, BIJAK M, MILLER E, et al. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients[J]. Bioelectromagnetics, 2017, 38(5): 386–396. doi: 10.1002/bem.22055.
    [38] TERANISHI M, ITO M, HUANG Zhizhou, et al. Extremely low-frequency electromagnetic field (ELF-EMF) increases mitochondrial electron transport chain activities and ameliorates depressive behaviors in mice[J]. International Journal of Molecular Sciences, 2024, 25(20): 11315. doi: 10.3390/ijms252011315.
    [39] MANCZAK M, CALKINS M J, and REDDY P H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: Implications for neuronal damage[J]. Human Molecular Genetics, 2011, 20(13): 2495–2509. doi: 10.1093/hmg/ddr139.
    [40] REDDY P H. Inhibitors of mitochondrial fission as a therapeutic strategy for diseases with oxidative stress and mitochondrial dysfunction[J]. Journal of Alzheimer's Disease, 2014, 40(2): 245–256. doi: 10.3233/JAD-132060.
  • 加载中
图(8)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2025-10-13
  • 网络出版日期:  2025-10-20

目录

    /

    返回文章
    返回