高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车联网的服务缓存和任务迁移机制

左琳立 夏士超 李云 潘俊男 陈冰旖

左琳立, 夏士超, 李云, 潘俊男, 陈冰旖. 车联网的服务缓存和任务迁移机制[J]. 电子与信息学报, 2025, 47(8): 2563-2572. doi: 10.11999/JEIT241097
引用本文: 左琳立, 夏士超, 李云, 潘俊男, 陈冰旖. 车联网的服务缓存和任务迁移机制[J]. 电子与信息学报, 2025, 47(8): 2563-2572. doi: 10.11999/JEIT241097
ZUO Linli, XIA Shichao, LI Yun, PAN Junnan, CHEN Bingyi. Service Caching and Task Migration Mechanism Based on Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2563-2572. doi: 10.11999/JEIT241097
Citation: ZUO Linli, XIA Shichao, LI Yun, PAN Junnan, CHEN Bingyi. Service Caching and Task Migration Mechanism Based on Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2563-2572. doi: 10.11999/JEIT241097

车联网的服务缓存和任务迁移机制

doi: 10.11999/JEIT241097 cstr: 32379.14.JEIT241097
基金项目: 国家自然科学基金(62301099, 62071077),重庆市自然科学基金(CSTB2024NSCQ-QCXMX0063, cstc2024ycjh-bgzxm003),重庆市教育委员会科学技术项目(KJQN202203122, KJQN202300638)
详细信息
    作者简介:

    左琳立:男,博士生,讲师,研究方向为无线通信技术、边缘智能等

    夏士超:男,博士,硕士生导师,讲师,研究方向为无线网络通信、通感算一体化技术、边缘计算等

    李云:男,博士,博士生导师,教授,研究方向为云计算、边缘智能、无线网络资源管理

    潘俊男:男,博士生,研究方向为无人机通信、人工智能等

    陈冰旖:女,硕士生,研究方向为边缘计算、车联网

    通讯作者:

    夏士超 xiashichao@cqupt.edu.cn

  • 中图分类号: TN929.5

Service Caching and Task Migration Mechanism Based on Internet of Vehicles

Funds: The National Natural Science Foundation of China (62301099, 62071077), The Natural Science Foundation of Chongqing, China (CSTB2024NSCQ-QCXMX0063, cstc2024ycjh-bgzxm003), The Scientific and Technological Research Project of Chongqing Education Commission (KJQN202203122, KJQN202300638)
  • 摘要: 近年来,随着车联网(IoV)应用的迅猛增长,为满足其对低时延和高效率计算服务需求,并缓解回程链路的传输压力,移动边缘计算(MEC)技术被广泛应用于车联网领域。然而,车辆高移动性使得边缘服务缓存和任务迁移的实现具有很强的挑战性。为此,针对车联网动态环境的特点,该文提出一种适应车联网动态环境特性的服务缓存和任务迁移联合优化算法(SCTMA),基于多智能体深度确定性策略梯度方法,在考虑车辆用户与路边单元(RSU)及基站之间交互不确定性的前提下,对边缘服务缓存和任务迁移进行联合优化。仿真结果表明,所提算法能降低缓存和任务迁移成本,提高缓存命中率。
  • 图  1  IoV网络模型

    图  2  SCTMA算法架构

    图  3  不同算法训练收敛情况

    图  4  不同车辆数目下的性能比较

    图  5  不同最大缓存容量下的性能比较

    图  6  不同车辆行驶速度下的性能比较

    表  1  仿真参数

    参数
    BS数量 3
    MEC服务器数量 3
    RSU数量 10
    车辆数量 15
    服务类型数量 10
    服务大小 100~600 MB
    车辆速度 30 m/s
    RSU覆盖半径 150 m
    BS覆盖半径 500 m
    MEC服务器最大缓存容量 2 GB
    MEC服务器的CPU频率 $5 \times {10^6}$ cycle/s
    下载: 导出CSV
  • [1] WU Ziying and YAN Danfeng. Deep reinforcement learning-based computation offloading for 5G vehicle-aware multi-access edge computing network[J]. China Communications, 2021, 18(11): 26–41. doi: 10.23919/JCC.2021.11.003.
    [2] 李智勇, 王琦, 陈一凡, 等. 车辆边缘计算环境下任务卸载研究综述[J]. 计算机学报, 2021, 44(5): 963–982. doi: 10.11897/SP.J.1016.2021.00963.

    LI Zhiyong, WANG Qi, CHEN Yifan, et al. A survey on task offloading research in vehicular edge computing[J]. Chinese Journal of Computers, 2021, 44(5): 963–982. doi: 10.11897/SP.J.1016.2021.00963.
    [3] WU Qiong, ZHAO Yu, FAN Qiang, et al. Mobility-aware cooperative caching in vehicular edge computing based on asynchronous federated and deep reinforcement learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(1): 66–81. doi: 10.1109/JSTSP.2022.3221271.
    [4] LING Chen, ZHANG Weizhe, FAN Qingyang, et al. Cooperative service caching in vehicular edge computing networks based on transportation correlation analysis[J]. IEEE Internet of Things Journal, 2024, 11(12): 22754–22767. doi: 10.1109/JIOT.2024.3382723.
    [5] WANG Ruyan, KAN Zunwei, CUI Yaping, et al. Cooperative caching strategy with content request prediction in internet of vehicles[J]. IEEE Internet of Things Journal, 2021, 8(11): 8964–8975. doi: 10.1109/JIOT.2021.3056084.
    [6] ZENG Feng, ZHANG Kanwen, WU Lin, et al. Efficient caching in vehicular edge computing based on edge-cloud collaboration[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2468–2481. doi: 10.1109/TVT.2022.3213130.
    [7] SHEN Qiaoqiao, HU Binjie, and XIA Enjun. Dependency-aware task offloading and service caching in vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 13182–13197. doi: 10.1109/TVT.2022.3196544.
    [8] NGUYEN T V, DAO N N, TUONG V D, et al. User-aware and flexible proactive caching using LSTM and ensemble learning in IoT-MEC networks[J]. IEEE Internet of Things Journal, 2022, 9(5): 3251–3269. doi: 10.1109/JIOT.2021.3097768.
    [9] LIU Wenjie, ZHANG Haixia, DING Hui, et al. Mobility-aware coded edge caching in vehicular networks with dynamic content popularity[C]. Proceedings of 2021 IEEE Wireless Communications and Networking Conference, Nanjing, China, 2021: 1–6. doi: 10.1109/WCNC49053.2021.9417383.
    [10] PENG Yan, TANG Xiaogang, ZHOU Yiqing, et al. Computing and communication cost-aware service migration enabled by transfer reinforcement learning for dynamic vehicular edge computing networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(1): 257–269. doi: 10.1109/TMC.2022.3225239.
    [11] LABRIJI I, MENEGHELLO F, CECCHINATO D, et al. Mobility aware and dynamic migration of MEC Services for the Internet of Vehicles[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 570–584. doi: 10.1109/TNSM.2021.3052808.
    [12] WANG Haipeng, LV Tiejun, LIN Zhipeng, et al. Energy-delay minimization of task migration based on game theory in MEC-assisted vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 8175–8188. doi: 10.1109/TVT.2022.3175238.
    [13] LABRIJI I, STRINATI E C, PERRAUD E, et al. Dynamic migration strategy for mobile multi-access edge computing services[C]. Proceedings of 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 710–715. doi: 10.1109/WCNC51071.2022.9771612.
    [14] WU Qiong, WANG Siyuan, GE Hongmei, et al. Delay-sensitive task offloading in vehicular fog computing-assisted platoons[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2012–2026. doi: 10.1109/TNSM.2023.3322881.
    [15] YU Genghua, HE Yixin, WU Jian, et al. Mobility-aware proactive edge caching for large files in the internet of vehicles[J]. IEEE Internet of Things Journal, 2023, 10(13): 11293–11305. doi: 10.1109/JIOT.2023.3240423.
    [16] 杨守义, 韩昊锦, 郝万明, 等. 边缘计算中面向缓存的迁移决策和资源分配[J]. 电子与信息学报, 2024, 46(12): 4391–4398. doi: 10.11999/JEIT240427.

    YANG Shouyi, HAN Haojin, HAO Wanming, et al. Cache oriented migration decision and resource allocation in edge computing[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4391–4398. doi: 10.11999/JEIT240427.
    [17] GAN Jiongpeng, LI Shen, LIN Xianke, et al. Multi-agent deep reinforcement learning-based multi-objective cooperative control strategy for hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 11123–11135. doi: 10.1109/TVT.2024.3373906.
    [18] ZHOU Huan, ZHANG Zhenyu, WU Yuan, et al. Energy efficient joint computation offloading and service caching for mobile edge computing: A deep reinforcement learning approach[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(2): 950–961. doi: 10.1109/TGCN.2022.3186403.
    [19] LIU Yan, LIN Peng, ZHANG Mengya, et al. Mobile-aware service offloading for UAV-assisted IoV: A multiagent tiny distributed learning approach[J]. IEEE Internet of Things Journal, 2024, 11(12): 21191–21201. doi: 10.1109/JIOT.2024.3373225.
    [20] 黄思进, 文佳, 陈哲毅. 面向边缘车联网系统的智能服务迁移方法[J]. 系统仿真学报, 2025, 37(2): 379–391. doi: 10.16182/j.issn1004731x.joss.23-1142.

    HUANG Sijin, WEN Jia, and CHEN Zheyi. Intelligent service migration towards MEC-based IoV systems[J]. Journal of System Simulation, 2025, 37(2): 379–391. doi: 10.16182/j.issn1004731x.joss.23-1142.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  66
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-12
  • 修回日期:  2025-07-09
  • 网络出版日期:  2025-07-25
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回