高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线信道硬件孪生技术研究进展与挑战

房胜 朱秋明 谢悦天 江浩 李辉 吴启晖 毛开 华博宇

房胜, 朱秋明, 谢悦天, 江浩, 李辉, 吴启晖, 毛开, 华博宇. 无线信道硬件孪生技术研究进展与挑战[J]. 电子与信息学报, 2025, 47(8): 2416-2428. doi: 10.11999/JEIT241093
引用本文: 房胜, 朱秋明, 谢悦天, 江浩, 李辉, 吴启晖, 毛开, 华博宇. 无线信道硬件孪生技术研究进展与挑战[J]. 电子与信息学报, 2025, 47(8): 2416-2428. doi: 10.11999/JEIT241093
FANG Sheng, ZHU Qiuming, XIE Yuetian, JIANG Hao, LI Hui, WU Qihui, MAO Kai, HUA Boyu. Advances and Challenges in Wireless Channel Hardware Twin[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2416-2428. doi: 10.11999/JEIT241093
Citation: FANG Sheng, ZHU Qiuming, XIE Yuetian, JIANG Hao, LI Hui, WU Qihui, MAO Kai, HUA Boyu. Advances and Challenges in Wireless Channel Hardware Twin[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2416-2428. doi: 10.11999/JEIT241093

无线信道硬件孪生技术研究进展与挑战

doi: 10.11999/JEIT241093 cstr: 32379.14.JEIT241093
基金项目: 国家自然科学基金(62271250, U23B2005)
详细信息
    作者简介:

    房胜:男,博士生,研究方向为无线信道建模与孪生技术

    朱秋明:男,教授,研究方向为无线信道测量建模与数字孪生、电磁频谱态势可视化测绘与认知等

    谢悦天:男,硕士生,研究方向为无线信道模拟技术

    江浩:男,副教授,研究方向为低空无人机通感算一体化理论与关键技术

    李辉:男,硕士生,研究方向为无线信道建模

    吴启晖:男,教授,研究方向为认知信息论、电磁空间频谱智能管控、天地一体化信息网络等

    毛开:男,博士,研究方向为信道测量与建模

    华博宇:男,讲师,研究方向为移动无线信道测量与参数估计

    通讯作者:

    朱秋明 zhuqiuming@nuaa.edu.cn

  • 中图分类号: TN92

Advances and Challenges in Wireless Channel Hardware Twin

Funds: The National Natural Science Foundation of China (62271250, U23B2005)
  • 摘要: 无线信道特性对通信系统性能至关重要,信道孪生技术是指通过物理或数字方式精确地复现信道特性对信号传播的失真影响,为通信系统性能评估提供有效测试手段。其中,数字孪生方式更为灵活方便,特别是无线信道硬件孪生平台已广泛应用于通信设备的批量化测试。然而,随着通信系统向大带宽、高动态和大规模网络发展,现有无线信道硬件孪生技术难以满足未来系统性能验证需求。鉴于此,该文首先给出了硬件孪生技术面临的主要挑战,然后对国内外研究进展进行分类阐述与分析比较,最后探讨了无线信道硬件孪生技术的未来发展趋势和应用前景。
  • 图  1  无线信道硬件孪生技术研究内容

    图  2  基于实测信道数据的硬件孪生架构

    图  3  面向确定性信道模型的硬件孪生架构

    图  4  面向统计性信道模型的硬件孪生架构

    表  1  部分典型的无线信道数字孪生系统

    开发团队 系统名称 类型 系统特点
    美国纽约大学[7] NYUSIM CS 基于MATLAB平台;支持0.5~150 GHz频段信道建模;支持UMi, UMa, RMa, InH和InF场景;支持基于真实测量的确定信道模型
    德国弗朗霍夫海因里
    希赫兹研究所[8]
    QuaDRiGa CS 基于MATLAB平台;支持0.5~100 GHz频段信道建模;支持UMi, UMa, RMa, 、InH和卫星场景;支持3GPP和WINNER+等信道模型
    阿卜杜拉国王科技
    大学[9]
    TeraMIMO CS 基于MATLAB平台;支持0.1~10 THz频段信道建模;支持室内/室外短程通信场景;支持宽带太赫兹信道模型
    乌拉圭共和国大学[10] PyWiCh CS 基于MATLAB平台;支持0.5~100 GHz 频段信道建模;支持UMi, UMa, InH和InF场景;支持3GPP信道模型
    任康无线智能实验室[11] DeepMIMO CS 基于MATLAB和Python平台;支持毫米波频段信道的建模;支持DeepMIMO网站提供的确定场景;支持基于射线追踪的确定性信道模型
    北京邮电大学[12] BUPTCMG-IMT2030 CS 基于MATLAB平台;支持0.5~132 GHz频段信道建模;支持UMi与InH等典型场景;支持ITU-R信道模型
    北京交通大学[13] CloudRT CS 基于MATLAB和C++等平台;支持sub-6 GHz、毫米波即THz等频段信道建模;支持铁路、城市室内和室外等场景;支持基于射线追踪的确定性信道模型
    东南大学[14] SEU-PML-6GPCS CS 基于MATLAB平台;支持6G全频段信道建模;支持卫星、无人机、陆地和海洋等场景;支持3GPP和ITU-R等信道模型
    美国国防高级研究
    计划局&美国东北大学[15]
    Colosseum CE 基于NI USRP平台;支持10 MHz-6 GHz射频信号接入;支持100 MHz带宽信号处理;时延精度可达1 ms;最大支持256×256通信网络验证
    奥地利理工学院[16] AIT CE CE 基于NI USRP平台;支持sub-6 GHz射频信号接入;支持20 MHz带宽信号处理;时延精度可达100 ns
    南京航空航天大学[17] NUAA-UAVChEm CE 基于FPGA平台;支持sub-6 GHz的射频信号接入;支持100 MHz带宽信号处理;最大支持8×8通信网络验证
    是德科技[18] PROPSIM F64 CE 基于FPGA平台;支持3 MHz~43.5 GHz射频信号接入;支持400 MHz带宽信号处理;最大支持16×16通信网络验证
    坤恒顺维[19] KSW-WNS04A CE 基于FPGA平台;支持1.5 MHz~7.5 GHz射频信号接入;支持1 GHz带宽信号处理;时延精度可达0.1 ns
    思博伦[20] Vertex CE 基于FPGA平台;支持30 MHz~5.9 GHz射频信号接入;支持1.2 GHz带宽信号处理;最大支持64×8通信网络验证
    罗德&施瓦茨[21] SMW200A CE 基于FPGA平台;支持100 kHz~3 GHz射频信号接入;支持160 MHz带宽信号处理;最大支持8×8通信网络验证
    注:第三代合作伙伴计划(3rd Generation Partnership Project, 3GPP);国际电信联盟(International Telecommunication Union, ITU);无线世界研究论坛(Wireless World Initiative New Radio, WINNER);城市微小区(Urban Microcell, UMi);城市宏小区(Urban Macrocell, UMa);农村宏小区(Rural Macrocell, RMa);室内热点(Indoor Hotspot, InH);室内工厂(Indoor Factory, InF);通用软件无线电外设(Universal Software Radio Peripheral, USRP);现场可编程门阵列(Field Programmable Gate Array, FPGA)
    下载: 导出CSV

    表  2  3种信道硬件孪生技术性能比对

    真实性 灵活性 可扩展性 易实现性 仿真时长
    面向实测信道数据的信道孪生 $\bigstar\bigstar\bigstar $ $\bigstar $ $\bigstar $ $\bigstar \bigstar\bigstar$ $\bigstar $
    面向确定性信道模型的信道孪生 $\bigstar\bigstar $ $\bigstar\bigstar\bigstar $ $\bigstar\bigstar $ $\bigstar\bigstar $ $\bigstar\bigstar $
    面向统计性信道模型的信道孪生 $\bigstar $ $\bigstar\bigstar\bigstar $ $\bigstar\bigstar\bigstar $ $\bigstar $ $\bigstar\bigstar\bigstar $
    注:$\bigstar $越多表示该项性能越好;真实性:对真实传播场景的复现能力;灵活性:是否支持多场景仿真;可扩展性:是否支持根据需求进行硬件升级或扩展;易实现性:实现难度和资源需求;仿真时长:相同资源下,可支持的信道仿真的时长
    下载: 导出CSV
  • [1] LIU Ting, GUAN Ke, HE Danping, et al. 6G integrated sensing and communications channel modeling: Challenges and opportunities[J]. IEEE Vehicular Technology Magazine, 2024, 19(2): 31–40. doi: 10.1109/MVT.2024.3373930.
    [2] WANG Heng, ZHANG Jianhua, NIE Gaofeng, et al. Digital twin channel for 6G: Concepts, architectures and potential applications[J]. IEEE Communications Magazine, 2025, 63(3): 24–30. doi: 10.1109/MCOM.001.2400213.
    [3] LI Junling, WANG Chengxiang, HUANG Chen, et al. Digital twin online channel modeling: Challenges, principles, and applications[J]. IEEE Vehicular Technology Magazine, 2025, 20(1): 94–103. doi: 10.1109/MVT.2025.3527729.
    [4] KIHERO A B, KARABACAK M, and ARSLAN H. Emulation techniques for small scale fading aspects by using reverberation chamber[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 1246–1258. doi: 10.1109/TAP.2018.2883571.
    [5] HATA M and NAGATSU T. Mobile location using signal strength measurements in a cellular system[J]. IEEE Transactions on Vehicular Technology, 1980, 29(2): 245–252. doi: 10.1109/T-VT.1980.23848.
    [6] FAILLI M. Digital land mobile radio communications[EB/OL]. https://op.europa.eu/en/publication-detail/-/publication/61fc77e7-bca2-4229-8eb4-77741f0d2ab2, 1989.
    [7] PODDAR H, JU Shihao, SHAKYA D, et al. A tutorial on NYUSIM: Sub-terahertz and millimeter-wave channel simulator for 5G, 6G, and beyond[J]. IEEE Communications Surveys & Tutorials, 2024, 26(2): 824–857. doi: 10.1109/COMST.2023.3344671.
    [8] FRAUNHOFER HHI. QuaDRiGa channel model[EB/OL]. https://quadriga-channel-model.de, 2023.
    [9] TARBOUSH S, SARIEDDEEN H, CHEN Hui, et al. TeraMIMO: A channel simulator for wideband ultra-massive MIMO terahertz communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12325–12341. doi: 10.1109/TVT.2021.3123131.
    [10] BELZARENA P. PyWiCh: Python wireless channel simulator[C]. 2022 IEEE Latin-American Conference on Communications, Rio de Janeiro, Brazil, 2022: 1–6. doi: 10.1109/LATINCOM56090.2022.10000470.
    [11] ALKHATEEB A. DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO applications[EB/OL]. https://arxiv.org/abs/1902.06435, 2019.
    [12] BUPT-ARTT Lab, IMT-2030 THz channel model platform[EB/OL]. http://www.zjhlab.net/publications/buptcmg-imt2030_thz-channel-model-platform, 2023.
    [13] BJTU APC Lab, CloudRT ray-tracing simulation platform[EB/OL]. http://www.raytracer.cloud/, 2021.
    [14] WANG Chengxiang, LV Zhen, CHEN Yunfei, et al. A complete study of space-time-frequency statistical properties of the 6G pervasive channel model[J]. IEEE Transactions on Communications, 2023, 71(12): 7273–7287. doi: 10.1109/TCOMM.2023.3307144.
    [15] BONATI L, JOHARI P, POLESE M, et al. Colosseum: Large-scale wireless experimentation through hardware-in-the-loop network emulation[C]. 2021 IEEE International Symposium on Dynamic Spectrum Access Networks, Los Angeles, USA, 2021: 105–113. doi: 10.1109/DySPAN53946.2021.9677430.
    [16] DAKIĆ A, RAINER B, HOFER M, et al. Hardware-in-the-loop framework for testing wireless V2X communication[C]. 2023 IEEE Wireless Communications and Networking Conference, Glasgow, UK, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10118673.
    [17] ZHU Qiuming, ZHAO Zikun, MAO Kai, et al. A real-time hardware emulator for 3D non-stationary U2V channels[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(9): 3951–3964. doi: 10.1109/TCSI.2021.3087777.
    [18] KEYSIGHT Technologies. F8800A PROPSIM F64 channel emulator[EB/OL]. https://www.keysight.com/us/en/product/F8800A, 2023.
    [19] 坤恒顺维. KSW-WNS04无线信道仿真仪[EB/OL]. https://www.ksw-tech.com/products/ksw-wns04-wireless-channel-simulator.html, 2024.

    KSW Technologies Co. ,Ltd. KSW-WNS04 Wireless Channel Simulator[EB/OL]. https://www.ksw-tech.com/products/ksw-wns04-wireless-channel-simulator.html, 2024.
    [20] Spirent Communications. Spirent vertex channel emulator[EB/OL]. https://www.spirent.com/assets/u/spirent_vertex_channel_emulator_datasheet, 2024.
    [21] ROHDE&SCHWARZ. R&S®SMW200A vector signal generator[EB/OL]. https://www.rohde-schwarz.com/us/products/test-and-measurement/vector-signal-generators/rs-smw200a-vector-signal-generator_63493-38656.html, 2024.
    [22] JI Yilin and FAN Wei. Enabling high-fidelity ultra-wideband radio channel emulation: Band-stitching and digital predistortion concepts[J]. IEEE Open Journal of Antennas and Propagation, 2022, 3: 932–939. doi: 10.1109/OJAP.2022.3198287.
    [23] GHOSH A and KIM M. THz channel sounding and modeling techniques: An overview[J]. IEEE Access, 2023, 11: 17823–17856. doi: 10.1109/ACCESS.2023.3246161.
    [24] FAN Wei, KYÖSTI P, HENTILÄ L, et al. A flexible millimeter-wave radio channel emulator design with experimental validations[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6446–6451. doi: 10.1109/TAP.2018.2864339.
    [25] CAO Jue, TILA F, and NIX A. Design and implementation of a wideband channel emulation platform for 5G mmWave vehicular communication[J]. IET Communications, 2020, 14(14): 2369–2376. doi: 10.1049/iet-com.2019.1016.
    [26] JI Yilin, FAN Wei, and PEDERSEN G. Wideband radio channel emulation using band-stitching schemes[C]. 2020 14th European Conference on Antennas and Propagation, Copenhagen, Denmark, 2020: 1–5. doi: 10.23919/EuCAP48036.2020.9135788.
    [27] ZHANG Fengchun, BENGTSON M F, KYÖSTI P, et al. Dynamic sub-THZ radio channel emulation: Principle, challenges, and experimental validation[J]. IEEE Wireless Communications, 2024, 31(1): 10–16. doi: 10.1109/MWC.001.2300286.
    [28] FENG Ruirui, MAO Kai, ZHU Qiuming, et al. Real-time hardware emulation of frequency non-stationary UWB channels with continuous frequency response[C]. 2022 IEEE 22nd International Conference on Communication Technology, Nanjing, China, 2022: 999–1003. doi: 10.1109/ICCT56141.2022.10072872.
    [29] 朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述[J]. 移动通信, 2022, 46(12): 1–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 1–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [30] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-Assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [31] MAO Kai, ZHU Qiuming, WANG Chengxiang, et al. A survey on channel sounding technologies and measurements for UAV-assisted communications[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8004624. doi: 10.1109/TIM.2024.3436128.
    [32] HOFER M, XU Zhinan, VLASTARAS D, et al. Validation of a real-time geometry-based stochastic channel model for vehicular scenarios[C]. 2018 IEEE 87th Vehicular Technology Conference, Porto, Portugal, 2018: 1–5. doi: 10.1109/VTCSpring.2018.8417476.
    [33] ZHU Qiuming, LIU Xinglin, YIN Xuefeng, et al. A novel simulator of nonstationary random MIMO channels in Rayleigh fading scenarios[J]. International Journal of Antennas and Propagation, 2016, 2016: 3492591. doi: 10.1155/2016/3492591.
    [34] 李浩, 朱秋明, 陈应兵, 等. 非平稳信道衰落FPGA实时模拟方法[J]. 信号处理, 2018, 34(3): 368–375. doi: 10.16798/j.issn.1003-0530.2018.03.014.

    LI Hao, ZHU Qiuming, CHEN Yingbing, et al. A real-time FPGA-based emulation method for no-stationary channel fading[J]. Journal of Signal Processing, 2018, 34(3): 368–375. doi: 10.16798/j.issn.1003-0530.2018.03.014.
    [35] CHAUDHARI A, SQUIRES D, and TILGHMAN P. Colosseum: A battleground for AI let loose on the RF spectrum[J]. Microwave Journal, 2018, 61(9): 22–36.
    [36] HUANG Pengda, TONNEMACHER M J, DU Yongjiu, et al. Towards massive MIMO channel emulation: Channel accuracy versus implementation resources[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 4635–4651. doi: 10.1109/TVT.2020.2980583.
    [37] HUANG Duoxian, XIN Lijian, HUANG Jie, et al. Adaptive non-stationary vehicle-to-vehicle MIMO channel simulator and emulator[C]. 2023 IEEE Wireless Communications and Networking Conference, Glasgow, UK, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10119045.
    [38] VAN TIEN T, TIEN T M, and KHAI L D. Hardware implementation of a MIMO channel emulator for high speed WLAN 802.11 ac[C]. 2018 5th NAFOSTED Conference on Information and Computer Science, Ho Chi Minh City, Vietnam, 2018: 183–188. doi: 10.1109/NICS.2018.8606847.
    [39] FANG Sheng, MAO Tongbao, HUA Boyu, et al. A scalable spatial–temporal correlated non-stationary channel fading generation method[J]. Electronics, 2023, 12(19): 4132. doi: 10.3390/electronics12194132.
    [40] CHEN Yanning, LIU Fang, GAO Jie, et al. Research on electromagnetic environment characteristic acquisition system for industrial chips[J]. Electronics, 2024, 13(10): 1963. doi: 10.3390/electronics13101963.
    [41] XU Yuan, WU Jintie, LIANG Wei, et al. The development of high performance GNSS RF record & playback system[C]. 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition, London, UK, 2017: 74–78. doi: 10.1109/iWEM.2017.7968789.
    [42] CONSOLI A and YOSSEF Y B. High precision record & playback system for the analysis of wide-band GNSS signals[C]. 2019 European Navigation Conference, Warsaw, Poland, 2019: 1–5. doi: 10.1109/EURONAV.2019.8714139.
    [43] ZHAO Yingxiao, SU Yang, HUANG Rui, et al. Design and implementation of a radar waveform playback system for real-time digital signal processing test[C]. 2017 Sixth Asia-Pacific Conference on Antennas and Propagation, Xi'an, China, 2017: 1–3. doi: 10.1109/APCAP.2017.8420895.
    [44] MATHUR N and LAKSHMI B. High throughput arbitrary sample rate converter for software radios[C]. 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies, Kanyakumari, India, 2014: 1121–1123. doi: 10.1109/ICCICCT.2014.6993129.
    [45] ZHAO Wenhao, TIAN Shulin, LIU Ke, et al. Low spurious waveform synthesis based on digital resampling[C]. 2021 IEEE 15th International Conference on Electronic Measurement & Instruments, Nanjing, China, 2021: 276–280. doi: 10.1109/ICEMI52946.2021.9679594.
    [46] ZHAO Yingxiao, YOU Hongliang, and ZHANG Yue. An FPGA-based direct sampling and digital processing system for wideband and narrowband radar signal[J]. Journal of Physics: Conference Series, 2020, 1624(3): 032029. doi: 10.1088/1742-6596/1624/3/032029.
    [47] JENSERUD T and OTNES R. Reverberation tail in power delay profiles: Effects and modeling[C]. 2013 MTS/IEEE OCEANS-Bergen, Bergen, Norway, 2013: 1–10. doi: 10.1109/OCEANS-Bergen.2013.6608063.
    [48] SOCHELEAU F X, LAOT C, and PASSERIEUX J M. Parametric replay-based simulation of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2015, 40(4): 796–806. doi: 10.1109/JOE.2015.2458211.
    [49] OTNES R, VAN WALREE P A, and JENSERUD T. Validation of replay-based underwater acoustic communication channel simulation[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 689–700. doi: 10.1109/JOE.2013.2262743.
    [50] ISUKAPALLI Y, SONG H C, and HODGKISS W S. Stochastic channel simulator based on local scattering functions[J]. The Journal of the Acoustical Society of America, 2011, 130(4): EL200–EL205. doi: 10.1121/1.3633688.
    [51] SOCHELEAU F X, LAOT C, and PASSERIEUX J M. Stochastic replay of non-WSSUS underwater acoustic communication channels recorded at sea[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4838–4849. doi: 10.1109/TSP.2011.2160057.
    [52] YANG S, DEANE G B, PREISIG J C, et al. On the reusability of postexperimental field data for underwater acoustic communications R&D[J]. IEEE Journal of Oceanic Engineering, 2019, 44(4): 912–931. doi: 10.1109/JOE.2019.2925921.
    [53] YANG S and SINGER A C. Optimal replay-based channel simulation via dithering methods[C]. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2019: 957–963. doi: 10.1109/IEEECONF44664.2019.9049034.
    [54] OTNES R, VAN WALREE P A, BUEN H, et al. Underwater acoustic network simulation with lookup tables from physical-layer replay[J]. IEEE Journal of Oceanic Engineering, 2015, 40(4): 822–840. doi: 10.1109/JOE.2015.2471736.
    [55] RUSCA R, RAVIGLIONE F, CASETTI C, et al. Mobile RF scenario design for massive-scale wireless channel emulators[C]. 2023 Joint European Conference on Networks and Communications & 6G Summit, Gothenburg, Sweden, 2023: 675–680. doi: 10.1109/EuCNC/6GSummit58263.2023.10188319.
    [56] VILLA D, TEHRANI-MOAYYED M, ROBINSON C P, et al. Colosseum as a digital twin: Bridging real-world experimentation and wireless network emulation[J]. IEEE Transactions on Mobile Computing, 2024, 23(10): 9150–9166. doi: 10.1109/TMC.2024.3359596.
    [57] GHIAASI G, ASHURY M, VLASTARAS D, et al. Real-time vehicular channel emulator for future conformance tests of wireless ITS modems[C]. 2016 10th European Conference on Antennas and Propagation, Davos, Switzerland, 2016: 1–5. doi: 10.1109/EuCAP.2016.7481226.
    [58] CHAUDHARI A and BRAUN M. A scalable FPGA architecture for flexible, large-scale, real-time RF channel emulation[C]. 2018 13th International Symposium on Reconfigurable Communication-centric Systems-on-Chip, Lille, France, 2018: 1–8. doi: 10.1109/ReCoSoC.2018.8449390.
    [59] ZHOU Shun, OU Gang, and TANG Xiaomei. Satellite navigation multipath channel sparse reconstruction scheme applied in performance evaluation of constellation channel emulation[C]. 2021 13th International Symposium on Antennas, Propagation and EM Theory, Zhuhai, China, 2021: 01–03. doi: 10.1109/ISAPE54070.2021.9753259.
    [60] TEHRANI-MOAYYED M, BONATI L, JOHARI P, et al. Creating RF scenarios for large-scale, real-time wireless channel emulators[C]. 2021 19th Mediterranean Communication and Computer Networking Conference, Ibiza, Spain, 2021: 1–8. doi: 10.1109/MedComNet52149.2021.9501275.
    [61] MBUGUA A W, CHEN Yun, and FAN Wei. On simplification of ray tracing channels in radio channel emulators for device testing[C]. 2021 15th European Conference on Antennas and Propagation, Dusseldorf, Germany, 2021: 1–5. doi: 10.23919/EuCAP51087.2021.9411504.
    [62] MBUGUA A W, CHEN Yun, and FAN Wei. Radio channel emulation for virtual drive testing with site-specific channels[C]. 2022 16th European Conference on Antennas and Propagation, Madrid, Spain, 2022: 1–5. doi: 10.23919/EuCAP53622.2022.9769382.
    [63] MBUGUA A W, CHEN Yun, RASCHKOWSKI L, et al. Efficient preprocessing of site-specific radio channels for virtual drive testing in hardware emulators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1787–1799. doi: 10.1109/TAES.2022.3205289.
    [64] GHIAASI G, BLAZEK T, ASHURY M, et al. Real‐time emulation of nonstationary channels in safety‐relevant vehicular scenarios[J]. Wireless Communications and Mobile Computing, 2018, 2018: 2423837. doi: 10.1155/2018/2423837.
    [65] HOFER M, BERNADÓ L, RAINER B, et al. Evaluation of vehicle-in-the-loop tests for wireless V2X communication[C]. 2019 IEEE 90th Vehicular Technology Conference, Honolulu, USA, 2019: 1–5. doi: 10.1109/VTCFall.2019.8891080.
    [66] BARCKLOW D R, BLOCH L E, SWEENEY S W, et al. Radio frequency emulation system for the defense advanced research projects agency spectrum collaboration challenge[J]. Johns Hopkins APL Technical Digest, 2019, 35(1): 69–78.
    [67] KALTENBERGER F, ZEMEN T, and UEBERHUBER C W. Low-complexity geometry-based MIMO channel simulation[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2007: 095281. doi: 10.1155/2007/95281.
    [68] HOFER M, XU Zhinan, VLASTARAS D, et al. Real-time geometry-based wireless channel emulation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1631–1645. doi: 10.1109/TVT.2018.2888914.
    [69] DAKIĆ A, HOFER M, RAINER B, et al. Real-time vehicular wireless system-level simulation[J]. IEEE Access, 2021, 9: 23202–23217. doi: 10.1109/ACCESS.2021.3055978.
    [70] ZHANG Dongyang, MAO Kai, YANG Yang, et al. Implementation of non-stationary channel emulator based on USRP[C]. 5th International Conference on Machine Learning and Intelligent Communications, Shenzhen, China, 2021, 342: 437–446. doi: 10.1007/978-3-030-66785-6_48.
    [71] 黄文清, 李伟东, 郭放, 等. 基于轨迹的车对车无线信道建模及硬件模拟[J]. 电子测量与仪器学报, 2019, 33(8): 55–62. doi: 10.13382/j.jemi.B1902193.

    HUANG Wenqing, LI Weidong, GUO Fang, et al. Channel modeling and hardware emulation for the trajectories based vehicle-to-vehicle channels[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(8): 55–62. doi: 10.13382/j.jemi.B1902193.
    [72] CHEN Y M and CHEN Chuncheng. Design of farrow structured variable fractional delay filter for time-varying LEO communication channel emulator with SRRC communication waveforms[J]. IEEE Access, 2024, 12: 122229–122238. doi: 10.1109/ACCESS.2024.3452496.
    [73] YOUNG D J and BEAULIEU N C. The generation of correlated Rayleigh random variates by inverse discrete Fourier transform[J]. IEEE Transactions on Communications, 2000, 48(7): 1114–1127. doi: 10.1109/26.855519.
    [74] BADDOUR K E and BEAULIEU N C. Autoregressive modeling for fading channel simulation[J]. IEEE Transactions on Wireless Communications, 2005, 4(4): 1650–1662. doi: 10.1109/TWC.2005.850327.
    [75] ALIMOHAMMAD A and COCKBURN B F. A reconfigurable SOS-based Rayleigh fading channel simulator[C]. IEEE Workshop on Signal Processing Systems Design and Implementation, Banff, Canada, 2006: 39–44. doi: 10.1109/SIPS.2006.352552.
    [76] YUAN Yi, WANG Chengxiang, CHENG Xiang, et al. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 298–309. doi: 10.1109/TWC.2013.120313.130434.
    [77] GUTIÉRREZ C A and PATZOLD M. The design of sum-of-cisoids Rayleigh fading channel simulators assuming non-isotropic scattering conditions[J]. IEEE Transactions on Wireless Communications, 2010, 9(4): 1308–1314. doi: 10.1109/TWC.2010.04.091198.
    [78] WANG Weimin, WANG Heng, WU Yongle, et al. Novel deterministic angular sampling methods for 3D channel models[J]. IEEE Communications Letters, 2021, 25(6): 1756–1760. doi: 10.1109/LCOMM.2021.3061735.
    [79] ZHU Qiuming, HUANG Wei, MAO Kai, et al. A flexible FPGA-based channel emulator for non-stationary MIMO fading channels[J]. Applied Sciences, 2020, 10(12): 4161. doi: 10.3390/app10124161.
    [80] LIU Xinglin, ZHU Qiuming, CHEN Xiaomin, et al. A new simulation model for non-stationary fading channel[C]. 2016 3rd International Conference on Electronic Design, Phuket, Thailand, 2016: 66–69. doi: 10.1109/ICED.2016.7804608.
    [81] ZHU Qiuming, LI Hao, FU Yu, et al. A novel 3D non-stationary wireless MIMO channel simulator and hardware emulator[J]. IEEE Transactions on Communications, 2018, 66(9): 3865–3878. doi: 10.1109/TCOMM.2018.2824817.
    [82] GUTIÉRREZ C A and PÄTZOLD M. The generalized method of equal areas for the design of sum-of-cisoids simulators for mobile Rayleigh fading channels with arbitrary Doppler spectra[J]. Wireless Communications and Mobile Computing, 2013, 13(10): 951–966. doi: 10.1002/wcm.1154.
    [83] ZHANG Yuxiang, YUAN Zhiqiang, TIAN Lei, et al. A novel random angular sampling method for spatial and temporal channel emulation[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1381–1385. doi: 10.1109/LWC.2019.2918787.
    [84] GUTIÉRREZ C A, FABÍAN-RODRÍGUEZ R A, CASTILLO-SORIA F R, et al. SOC-based simulation of 3D MIMO mobile-to-mobile fading channels: A Riemann sum approach[J]. IEEE Open Journal of Vehicular Technology, 2024, 5: 1–20. doi: 10.1109/OJVT.2023.3331534.
    [85] PÄTZOLD M and YOUSSEF N. Modelling and simulation of direction-selective and frequency-selective mobile radio channels[J]. AEU - International Journal of Electronics and Communications, 2001, 55(6): 433–442. doi: 10.1078/1434-8411-54100064.
    [86] DONG Shuli, ZHANG Taotao, and WANG Yan. A real-time simulation design of multi-path fading channel based on SOS method[C]. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, Chengdu, China, 2019: 2550–2554. doi: 10.1109/IAEAC47372.2019.8997884.
    [87] HUANG Duoxian, XIN Lijian, HUANG Jie, et al. A non-stationary channel emulator for 6G THz wireless channels[C]. 2023 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2023: 563–568. doi: 10.1109/WCSP58612.2023.10405337.
    [88] ZHAO Zikun, ZHU Qiuming, MAO Kai, et al. An efficient hardware generator for massive non-stationary fading channels[C]. 2020 IEEE Globecom Workshops, Taipei, China, 2020: 1–6. doi: 10.1109/GCWkshps50303.2020.9367588.
    [89] FANG Chen, MAO Kai, FANG Sheng, et al. CORDIC-based general multiple fading generator for wireless channel digital twin[J]. Sensors, 2023, 23(5): 2712. doi: 10.3390/s23052712.
    [90] 赵子坤, 房晨, 陈小敏, 等. 面向5G/6G大规模MIMO信道实时模拟研究[J]. 微波学报, 2022, 38(1): 30–35,40. doi: 10.14183/j.cnki.1005-6122.202201007.

    ZHAO Zikun, FANG Chen, CHEN Xiaomin, et al. A real-time emulation research on 5G/6G massive MIMO channels[J]. Journal of Microwaves, 2022, 38(1): 30–35,40. doi: 10.14183/j.cnki.1005-6122.202201007.
    [91] YANG Yang, LI Tingpeng, CHEN Xiaomin, et al. Real-time ray-based channel generation and emulation for UAV communications[J]. Chinese Journal of Aeronautics, 2022, 35(9): 106–116. doi: 10.1016/j.cja.2021.12.008.
    [92] PAPALAMPROU I, ARMENIAKOS G, STRATAKOS I, et al. Flexible real-time emulation of fading channels on SoC-FPGA devices[C]. 2024 Panhellenic Conference on Electronics & Telecommunications, Thessaloniki, Greece, 2024: 1–6. doi: 10.1109/PACET60398.2024.10497075.
    [93] XIAO Han, TIAN Wenqiang, LIU Wendong, et al. ChannelGAN: Deep learning-based channel modeling and generating[J]. IEEE Wireless Communications Letters, 2022, 11(3): 650–654. doi: 10.1109/LWC.2021.3140102.
    [94] ALKHATEEB A, JIANG Shuaifeng, and CHARAN G. Real-time digital twins: Vision and research directions for 6G and beyond[J]. IEEE Communications Magazine, 2023, 61(11): 128–134. doi: 10.1109/MCOM.001.2200866.
    [95] MAO Kai, ZHU Qiuming, SONG Maozhong, et al. Machine-learning-based 3-D channel modeling for U2V mmWave communications[J]. IEEE Internet of Things Journal, 2022, 9(18): 17592–17607. doi: 10.1109/JIOT.2022.3155773.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  145
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-10
  • 修回日期:  2025-07-17
  • 网络出版日期:  2025-07-24
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回