高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于张力微调和线长驱动的宏单元布局器

朱彦臻 严浩鹏 蔡述庭 高鹏

朱彦臻, 严浩鹏, 蔡述庭, 高鹏. 基于张力微调和线长驱动的宏单元布局器[J]. 电子与信息学报, 2025, 47(7): 2396-2404. doi: 10.11999/JEIT241079
引用本文: 朱彦臻, 严浩鹏, 蔡述庭, 高鹏. 基于张力微调和线长驱动的宏单元布局器[J]. 电子与信息学报, 2025, 47(7): 2396-2404. doi: 10.11999/JEIT241079
ZHU Yanzhen, YAN Haopeng, CAI Shuting, GAO Peng. Wire Length Driven Tension Refine Based Macro Placer[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2396-2404. doi: 10.11999/JEIT241079
Citation: ZHU Yanzhen, YAN Haopeng, CAI Shuting, GAO Peng. Wire Length Driven Tension Refine Based Macro Placer[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2396-2404. doi: 10.11999/JEIT241079

基于张力微调和线长驱动的宏单元布局器

doi: 10.11999/JEIT241079 cstr: 32379.14.JEIT241079
基金项目: 广东省科技计划(2022B0701180001)
详细信息
    作者简介:

    朱彦臻:男,硕士生,研究方向为电子设计自动化

    严浩鹏:男,硕士生,研究方向为电子设计自动化

    蔡述庭:男,教授,研究方向为电子设计自动化

    高鹏:男,讲师,研究方向为电子设计自动化

    通讯作者:

    蔡述庭 shutingcai@gdut.edu.cn

  • 中图分类号: TN47; TP301

Wire Length Driven Tension Refine Based Macro Placer

Funds: Guangdong S&T Programme (2022B0701180001)
  • 摘要: 随着重用方法学被引入到超大规模集成电路设计中,宏单元的使用率大幅提高。宏单元与标准单元之间巨大的尺寸差异给电路布局器带来了严峻的挑战。该文提出并实现了基于张力微调和线长驱动的宏单元布局器 WIMPlace。该文方法结合了基于权重的分割方法和受液体表面张力原理启发的宏单元微调技术,以实现有效的宏放置。WIMPlace算法采用4步流程:预处理、预布局、宏微调和宏合法化,并在其中宏微调阶段合理利用标准单元密度和线长函数进行优化。该文采用DREAMPlace2.0布局工具作为后端布局器,并在现代混合尺寸(MMS)测试集上进行实验。实验结果表明,与学术界领先的混合尺寸布局器ePlace-MS和最新的DREAMPlace4.0结果相比,在总共16个案例中的15个中,该文所提的WIMPlace算法都实现了最短的线长(HPWL),这表明该文方法在优化线长方面非常有效。
  • 图  1  本文算法流程图

    图  2  宏微调前后布局示意图

    图  3  基于约束图的宏合法化方法

    图  4  WIMPlace运行时间分解和运行时间与单元及宏数量的关系曲面

    1  单元预处理算法

     输入:待布局的线网集合E和单元集合V
     输出:分块后的结果P
     步骤1 初始化所有单元和线网权重为0;
     步骤2 遍历所有宏单元N
      步骤2.1 更新宏单元权重;
      步骤2.2 遍历下一层驱动单元直到达到设定值;
       步骤2.2.1 根据式(4)更新驱动线网权重;
       步骤2.2.2 根据式(5)更新驱动单元权重;
     步骤3 遍历所有宏单元N,若单元对当前宏权重最大则加入组P
    下载: 导出CSV

    表  1  MMS测试套件统计数据

    电路单元总数可移动单元数量标准单元数量宏数量端子数量线网数量目标密度(%)
    ADAPTEC1211 447210 967210 90463480221 142100
    ADAPTEC2255 023254 584254 457127439266 009100
    ADAPTEC3451 650450 985450 92758665466 758100
    ADAPTEC4496 054494 785494 716691 260515 951100
    ADAPTEC5843 128842 558842 48276570867 79850
    BIGBLUE1278 164277 636277 60432528284 479100
    BIGBLUE2557 866535 741534 78295922 125577 235100
    BIGBLUE31 096 8121 095 5831 093 0342 5491 2291 123 170100
    BIGBLUE42 177 3532 169 3822 169 1831997 9702 229 886100
    NEWBLUE1330 474330 137330 07364337338 90180
    NEWBLUE2441 516440 264436 5163 7481 252465 21990
    NEWBLUE3494 011482 884482 8335111 127552 19980
    NEWBLUE4646 139642 798642 717813 341637 05150
    NEWBLUE51 233 0581 228 2681 228 177914 7901 284 25150
    NEWBLUE61 255 0391 248 2241 248 150746 8151 288 44380
    NEWBLUE72 507 9542 481 5332 481 37216126 4212 636 82080
    下载: 导出CSV

    表  2  MMS基准测试套件的HPWL和sHPWL(×106)测试结果

    基准 FLOP FP3.0 CPx POLAR mPL6 NP3U DP2.0 ePlace-MS DP4.0 本文
    ADAPTEC1 76.83 82.39 79.05 92.17 77.84 75.55 67.68 66.99 65.75 65.71
    ADAPTEC2 84.14 88.53 99.11 149.43 88.40 78.50 83.62 76.76 76.78 73.55
    ADAPTEC3 175.99 187.98 175.18 170.48 180.40 169.74 174.63 161.55 157.47 156.93
    ADAPTEC4 161.68 187.50 156.75 175.19 162.02 166.68 143.44 147.04 144.40 142.96
    ADAPTEC5 357.83 338.74 338.67 340.45 336.30 294.24 368.45 312.86 307.25 291.99
    BIGBLUE1 94.92 104.91 96.18 99.12 99.36 96.57 85.75 86.29 85.80 85.67
    BIGBLUE2 153.02 145.89 147.19 157.72 144.37 147.17 137.67 130.06 125.49 123.14
    BIGBLUE3 346.24 400.40 344.63 420.28 319.63 338.47 280.5 284.39 277.55 276.15
    BIGBLUE4 777.84 775.43 772.53 814.07 804.00 799.66 654.54 656.68 647.21 645.98
    NEWBLUE1 67.97 73.91 65.26 70.68 66.93 61.25 66.62 61.87 60.95 56.27
    NEWBLUE2 187.40 197.15 187.87 197.65 179.18 163.76 159.79 162.68 159.25 150.40
    NEWBLUE3 345.99 325.72 269.47 601.17 415.86 280.92 351.25 304.16 281.57 274.49
    NEWBLUE4 256.54 270.70 256.97 277.60 277.69 229.36 261.2 229.20 225.34 220.91
    NEWBLUE5 510.83 500.09 453.05 450.69 515.49 420.46 458.31 392.93 390.97 390.03
    NEWBLUE6 493.64 512.19 452.83 475.78 482.44 474.86 461.8 409.28 414.17 393.59
    NEWBLUE7 1078.18 1016.10 1010.00 1107.59 1038.66 1100.84 946.3 895.11 886.18 883.51
    平均sHPWL 20.37% 24.72% 16.83% 36.04% 21.44% 12.67% 11.38% 4.31% 2.39% 0%
    下载: 导出CSV
  • [1] CHENG C K, KAHNG A B, KUNDU S, et al. Assessment of reinforcement learning for macro placement[C]. The 2023 International Symposium on Physical Design, New York, USA, 2023: 158–166. doi: 10.1145/3569052.3578926.
    [2] LANIUS C, LOU Jie, LOH J, et al. Automatic generation of structured macros using standard cells‒application to CIM[C]. The 2023 IEEE/ACM International Symposium on Low Power Electronics and Design, Vienna, Austria, 2023: 1–6. doi: 10.1109/ISLPED58423.2023.10244608.
    [3] YU Shenglu and DU Shimin. VLSI floorplanning algorithm based on reinforcement learning with obstacles[M]. SAMSONOVICH A V and LIU Tingting. Biologically Inspired Cognitive Architectures 2023. Cham: Springer, 2024: 1034–1043. doi: 10.1007/978-3-031-50381-8_110.
    [4] CHANG Y C, CHANG Yaowen, WU Guangming, et al. B*-Trees: A new representation for non-slicing floorplans[C]. The 37th Annual Design Automation Conference, Los Angeles, USA, 2000: 458–463. doi: 10.1145/337292.337541.
    [5] HONG Xianlong, HUANG Gang, CAI Yici, et al. Corner block list: An effective and efficient topological representation of non-slicing floorplan[C]. IEEE/ACM International Conference on Computer Aided Design, San Jose, USA, 2000: 8–12. doi: 10.1109/ICCAD.2000.896442.
    [6] YAN J Z, VISWANATHAN N, and CHU C. Handling complexities in modern large-scale mixed-size placement[C]. Proceedings of the 46th Annual Design Automation Conference, San Francisco, USA, 2009: 436–441. doi: 10.1145/1629911.1630028.
    [7] KIM M C and MARKOV I L. ComPLx: A competitive primal-dual Lagrange optimization for global placement[C]. The 49th Annual Design Automation Conference, San Francisco, USA, 2012: 747–752. doi: 10.1145/2228360.2228496.
    [8] LIN Tao, CHU C, SHINNERL J R, et al. POLAR: Placement based on novel rough legalization and refinement[C]. 2013 IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, 2013: 357–362. doi: 10.1109/ICCAD.2013.6691143.
    [9] CHEN T C, JIANG Zhewei, HSU T C, et al. NTUplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27(7): 1228–1240. doi: 10.1109/TCAD.2008.923063.
    [10] CHAN T F, CONG J, SHINNERL J R, et al. mPL6: Enhanced multilevel mixed-size placement[C]. The 2006 International Symposium on Physical Design, San Jose, USA, 2006: 212–214. doi: 10.1145/1123008.1123055.
    [11] LU Jingwei, ZHUANG Hao, CHEN Pengwen, et al. ePlace-MS: Electrostatics-based placement for mixed-size circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(5): 685–698. doi: 10.1109/TCAD.2015.2391263.
    [12] AGNESINA A, RAJVANSHI P, YANG Tian, et al. AutoDMP: Automated DREAMPlace-based macro placement[C]. The 2023 International Symposium on Physical Design, 2023: 149–157. doi: 10.1145/3569052.3578923.
    [13] YU Tao, GAO Peng, WANG Fei, et al. Non‐overlapping placement of macro cells based on reinforcement learning in chip design[J]. International Journal of Circuit Theory and Applications, 2025, 53(2): 1159–1170. doi: 10.1002/cta.4235.
    [14] SCHLAG S, HEUER T, GOTTESBÜREN L, et al. High-quality hypergraph partitioning[J]. ACM Journal of Experimental Algorithmics, 2022, 27: 1.9. doi: 10.1145/3529090.
    [15] CHEON Y and WONG D F. Design hierarchy guided multilevel circuit partitioning[C]. The 2002 International Symposium on Physical Design, San Diego, USA, 2002: 30–35. doi: 10.1145/505388.505398.
    [16] LIN Yibo, PAN D Z, REN Haoxing, et al. DREAMPlace 2.0: Open-source GPU-accelerated global and detailed placement for large-scale VLSI designs[C]. 2020 China Semiconductor Technology International Conference, Shanghai, China, 2020: 1–4. doi: 10.1109/CSTIC49141.2020.9282573.
    [17] CONG J and XIE Min. A robust detailed placement for mixed-size IC designs[C]. The 2006 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 2006: 188–194. doi: 10.1145/1118299.1118353.
    [18] VISWANATHAN N, PAN Min, and CHU C. FastPlace 3.0: A fast multilevel quadratic placement algorithm with placement congestion control[C]. 2007 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 2007: 135–140. doi: 10.1109/ASPDAC.2007.357975.
    [19] HSU M K and CHANG Yaowen. Unified analytical global placement for large-scale mixed-size circuit designs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31(9): 1366–1378. doi: 10.1109/TCAD.2012.2193582.
    [20] LIAO Peiyu, GUO Dawei, GUO Zizheng, et al. DREAMPlace 4.0: Timing-driven placement with momentum-based net weighting and Lagrangian-based refinement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(10): 3374–3387. doi: 10.1109/TCAD.2023.3240132.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  152
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-06
  • 修回日期:  2025-03-29
  • 网络出版日期:  2025-04-11
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回