高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多模态的小样本遥感影像地物分类模型

周维 魏名安 许海霞 伍志明

周维, 魏名安, 许海霞, 伍志明. 基于多模态的小样本遥感影像地物分类模型[J]. 电子与信息学报. doi: 10.11999/JEIT241057
引用本文: 周维, 魏名安, 许海霞, 伍志明. 基于多模态的小样本遥感影像地物分类模型[J]. 电子与信息学报. doi: 10.11999/JEIT241057
ZHOU Wei, WEI Mingan, XU Haixia, WU Zhiming. A Few-Shot Land Cover Classification Model for Remote Sensing Images Based on Multimodality[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241057
Citation: ZHOU Wei, WEI Mingan, XU Haixia, WU Zhiming. A Few-Shot Land Cover Classification Model for Remote Sensing Images Based on Multimodality[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241057

基于多模态的小样本遥感影像地物分类模型

doi: 10.11999/JEIT241057
基金项目: 湖南省教育厅科学研究重点项目(23A0155, 22A0127)
详细信息
    作者简介:

    周维:男,副教授,研究方向为计算机视觉、智能系统和网络安全

    魏名安:男,助理工程师,研究方向为遥感图像处理、深度学习

    许海霞:女,副教授,研究方向为计算机视觉、模式识别

    伍志明:男,硕士生,研究方向为遥感图像处理、深度学习

    通讯作者:

    周维 zhou_wei@xtu.edu.cn

  • 中图分类号: TN957

A Few-Shot Land Cover Classification Model for Remote Sensing Images Based on Multimodality

Funds: The Key Program Scientific Research Fund of Hunan Provincial Education Department (23A0155, 22A0127)
  • 摘要: 针对遥感影像覆盖范围大、标注困难、类别融合适配度弱的问题,该文提出一种基于图像-文本多模态融合的小样本语义分割网络模型(FSSNet),采用编解码结构,编码器提取、语义对齐图像-文本多模态特征,并引入类别信息融合模块、实例信息提取模块。其中利用相关性原理设计基于对比语言-图像预训练(CLIP)模型的类别信息融合模块以增强查询图像与支持图像、文本间类别的适配;利用支持图像的实例目标区域作为先验提示,设计基于改进金字塔特征网络(IFPN)的实例信息提取模块,以提高查询图像目标区域分割的完整性。解码器引入多尺度特征融合的语义聚合模块,聚合类别信息、多尺度实例位置信息和查询图像特征,准确识别地物语义类别。在小样本语义分割数据集PASCAL-5i,公共遥感影像地物分类数据集LoveDA, Postdam和Vaihingen进行实验,该文FSSNet模型在PASCAL-5i数据集上的1-shot, 5-shot的平均交并比(mIoU)精度超越多信息聚合网络(MIANet),优于最佳水平(SOTA)模型分别为2.29%, 1.96%;在数据集LoveDA, Postdam和Vaihingen上的mIoU精度,优于SOTA模型分别为2.1%, 1.4%, 1.9%。在水利工程实际场景构建数据集HERSD,并进行实验,该文FSSNet模型的mIoU精度高于SOTA模型1.89%。结果表明该文FSSNet模型在遥感影像小样本地物分类、水利实际场景具有更高的分类识别精度。
  • 图  1  本文FSSNet网络模型结构图

    图  2  CLIP 图像-文本对比学习示意图

    图  3  改进的多模态适配器

    图  4  基于图像分类任务的类信息校验

    图  5  基于IFPN结构的实例信息提取模块

    图  6  多尺度语义特征聚合模块示意图

    图  7  基于FPN/IFPN结构的实例信息提取模块输出Grad-CAM可视化图

    图  8  小目标语义分割结果

    图  9  本文FSSNet与Baseline 可视化对比

    图  10  在Vaihingen数据的测试集的可视化分割结果

    图  11  华南地区堤防原始遥感影像数据

    图  12  东干渠原始遥感影像数据

    图  13  HERSD数据集示意图

    图  14  HERSD数据集测试结果

    表  1  遥感影像语义分割数据集的详细信息

    数据集数量类别数量原始尺寸
    LoveDA6 01771 024×1 024
    Postdam4463 000×6 000
    Vaihingen3962 494×2 064
    下载: 导出CSV

    表  2  类别信息融合模块的分类性能与主流模型的对比

    模型 CIFAR-10 CIFAR-100
    ViT-H/14(arXiv’20) [25] 99.50 94.55
    DINOv2(arXiv’23)[26] 99.50 94.40
    µ2Net(arXiv’22)[27] 99.49 94.95
    CaiT-S(ICCV’21)[28] 99.1 90.80
    Astroformer(arXiv’23)[29] 99.12 93.36
    基准模型 93.68 84.17
    基准模型 + CIM(本文) 98.43↑4.75 93.49↑9.32
    下载: 导出CSV

    表  3  实例信息提取模块分割前景目标区域mIoU(%)性能对比

    方法PASCAL VOC(%)
    AMN (CVPR’22)[30]70.70
    BECO (CVPR’23)[31]71.80
    LPCAM (CVPR’23)[32]72.60
    CoBra(CVPR’24)[33]74.30
    FSSNet + FPN65.48
    FSSNet + IFPN(本文)74.52 ↑9.04 ↑0.22
    下载: 导出CSV

    表  4  在LoveDA数据集上的多尺度语义特征聚合模块对建筑物小目标区域分割结果

    方法IoU(%)
    UNet++(Springer’18)[3]52.6
    DeepLabV3+(ECCV’18)[35]50.9
    SwinUperNet(CVPR’21)[36]54.3
    DC-Swin(IEEE’22)[37]54.5
    UNetFormer(ISPRS’22)[38]58.8
    Hi-ResNet(arXiv’24)[39]58.3
    基准模型53.4
    基准模型 + MAM(本文)60.6 ↑7.2 ↑1.8
    下载: 导出CSV

    表  5  在数据集PASCAL-5i上不同模块mIoU(%)性能的消融合实验

    类别信息CIM 实例信息IIM 特征聚合MAM Fold-0 Fold-1 Fold-2 Fold-3 mIoU
    63.21 68.76 61.20 54.27 61.86
    65.45 70.12 62.85 56.42 63.71
    66.89 71.42 64.32 59.90 65.63
    64.78 69.48 63.10 55.36 63.18
    68.71 72.89 65.44 62.16 67.30↑5.44
    67.54 71.29 64.67 59.82 65.83↑3.97
    68.92 73.05 66.23 62.84 67.76↑5.90
    74.52 75.63 71.88 65.45 71.87↑10.01
    下载: 导出CSV

    表  6  本文FSSNet模型与主流小样本分割模型在PASCAL-5i$ \text{PASCAL-}{\text{5}}^{\text{i}} $数据集上的对比实验结果

    方法 1-shot 5-shot
    Fold-0 Fold-1 Fold-2 Fold-3 mIoU Fold-0 Fold-1 Fold-2 Fold-3 mIoU
    PFENET(IEEE’20)[40] 61.70 69.50 55.40 56.30 60.80 63.10 70.70 55.80 57.90 61.90
    HSNet(arXiv’23)[41] 64.30 70.70 60.30 60.50 64.00 70.30 73.20 67.40 67.10 69.50
    DPCN(CVPR’22)[42] 65.70 71.60 69.10 60.60 66.70 70.00 73.20 70.90 65.50 69.90
    BAM(CVPR’22)[43] 68.97 73.59 67.55 61.13 67.81 70.59 75.05 70.79 67.20 70.91
    NTRENet(CVPR’22)[44] 65.40 72.30 59.40 59.80 64.20 66.20 72.80 61.70 62.20 65.70
    MIANet(CVPR’23)[17] 68.51 75.76 67.46 63.15 68.72 70.20 77.38 70.02 68.77 71.59
    PMNet(IEEE/CVE’24)[45] 72.00 72.00 62.40 59.90 65.40 73.60 74.60 69.90 67.20 71.30
    Baseline 63.21 68.76 61.20 54.27 61.86 66.64 69.78 64.28 63.17 65.97
    FSSNet(本文) 73.63 74.59 70.55 65.28 71.01 73.52 73.84 75.36 71.47 73.55
    下载: 导出CSV

    表  7  在LoveDA, Potsdam和Vaihingen遥感数据集的对比结果

    方法 mIoU(%)
    LoveDA Postdam Vaihingen
    UNet++(Springer’18)[3] 批量样本 48.2 83.9 75.8
    DeepLabV3+(ECCV’18)[35] 47.6 83.4 81.3
    SwinUperNet(CVPR’21)[36] 50.0 85.8 78.6
    DC-Swin(IEEE’22)[37] 50.6 84.4 80.4
    UNetFormer(ISPRS’22)[38] 52.4 86.8 82.7
    Hi-ResNet(arXiv’23)[39] 52.5 86.1 79.8
    GeoRSCLIP(TGRS’24)[46] Zero-shot 30.8 38.0 22.3
    SegEarth-OV(IEEE’24)[47] 36.9 47.1 29.1
    MIANet(CVPR’23)[17] 1-shot 51.2 85.5 81.0
    FSSNet(本文) 54.6 88.2 84.6
    下载: 导出CSV

    表  8  HERSD数据集的详细信息

    空间分辨率 切分尺寸 切分方式 图像数量
    10 cm 1 024×1 024 均分网格 5 850
    滑动窗口 5 850
    中心膨胀缩小 17 550
    下载: 导出CSV

    表  9  不同的影像切分方法多个模型精度对比

    模型 方法 mIoU(%) 方法 mIoU(%)
    UNet++(Springer’18)[3] 均匀
    网格
    切分
    71.42 中心
    膨胀
    缩小
    切分
    73.37↑1.95
    HRNet(IEEE’20)[49] 74.03 78.36↑4.33
    SwinUperNet(CVPR’21)[36] 78.19 79.21↑1.02
    DC-Swin(IEEE’22)[37] 79.28 81.50↑2.22
    UNetFormer(ISPRS’22)[38] 77.32 79.45↑2.13
    FSSNet(本文) 80.80 83.93↑3.13
    下载: 导出CSV

    表  10  HERSD数据集测试结果

    模型 植被 裸土地 水泥地 旱地 棚房 混泥土房 加固斜坡 水域 大坝 mIoU (%)
    UNet++(Springer’18)[3] 76.4 77.1 82.6 81.5 69.3 64.9 58.0 74.8 77.7 73.37
    HRNet(IEEE’20)[49] 78.6 81.4 83.9 83.6 79.1 72.1 61.3 80.9 86.2 78.36
    SwinUperNet(CVPR’21)[36] 81.2 85.5 80.2 83.8 79.8 71.1 63.4 81.2 85.0 79.21
    DC-Swin(IEEE’22)[37] 85.0 82.2 85.3 85.5 88.7 69.4 59.1 86.2 88.4 81.50
    UNetFormer(ISPRS’22)[38] 79.7 85.0 86.8 76.5 82.9 74.7 64.7 82.4 86.2 79.45
    Hi-ResNet(arXiv’23)[39] 83.7 83.1 82.3 80.5 87.8 76.2 67.9 86.9 84.1 82.04
    FSSNet(本文) 86.9 85.3 87.1 86.4 86.2 77.4 67.4 85.7 88.6 83.93
    下载: 导出CSV
  • [1] 谢雯, 王若男, 羊鑫, 等. 融合深度可分离卷积的多尺度残差UNet在PolSAR地物分类中的研究[J]. 电子与信息学报, 2023, 45(8): 2975–2985. doi: 10.11999/JEIT220867.

    XIE Wen, WANG Ruonan, YANG Xin, et al. Research on multi-scale residual UNet fused with depthwise separable convolution in PolSAR terrain classification[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2975–2985. doi: 10.11999/JEIT220867.
    [2] LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015. doi: 10.1109/CVPR.2015.7298965.
    [3] ZHOU Zongwei, RAHMAN SIDDIQUEE M, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]. The 4th International Workshop Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain, 2018. doi: 10.1007/978-3-030-00889-5_1.
    [4] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184.
    [5] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [6] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016. doi: 10.1109/CVPR.2016.90.
    [7] XU Zhiyong, ZHANG Weicun, ZHANG Tianxiang, et al. Efficient transformer for remote sensing image segmentation[J]. Remote Sensing, 2021, 13(18): 3585. doi: 10.3390/rs13183585.
    [8] MA Xianping, ZHANG Xiaokang, PUN M O, et al. A multilevel multimodal fusion transformer for remote sensing semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5403215. doi: 10.1109/TGRS.2024.3373033.
    [9] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53–65. doi: 10.1109/MSP.2017.2765202.
    [10] PAN S J and YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359. doi: 10.1109/TKDE.2009.191.
    [11] 陈龙, 张建林, 彭昊, 等. 多尺度注意力与领域自适应的小样本图像识别[J]. 光电工程, 2023, 50(4): 220232. doi: 10.12086/oee.2023.220232.

    CHEN Long, ZHANG Jianlin, PENG Hao, et al. Few-shot image classification via multi-scale attention and domain adaptation[J]. Opto-Electronic Engineering, 2023, 50(4): 220232. doi: 10.12086/oee.2023.220232.
    [12] RAKELLY K, SHELHAMER E, DARRELL T, et al. Few-shot segmentation propagation with guided networks[J]. arXiv preprint arXiv: 1806.07373, 2018.
    [13] ZHANG Chi, LIN Guosheng, LIU Fayao, et al. CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019. doi: 10.1109/CVPR.2019.00536.
    [14] 刘晓敏, 余梦君, 乔振壮, 等. 面向多源遥感数据分类的尺度自适应融合网络[J]. 电子与信息学报, 2024, 46(9): 3693–3702. doi: 10.11999/JEIT240178.

    LIU Xiaomin, YU Mengjun, QIAO Zhenzhuang, et al. Scale adaptive fusion network for multimodal remote sensing data classification[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3693–3702. doi: 10.11999/JEIT240178.
    [15] LI Boyi, WEINBERGER K Q, BELONGIE S J, et al. Language-driven semantic segmentation[C]. The 10th International Conference on Learning Representations, 2022.
    [16] XU Mengde, ZHANG Zheng, WEI Fangyun, et al. A simple baseline for open-vocabulary semantic segmentation with pre-trained vision-language model[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022. doi: 10.1007/978-3-031-19818-2_42.
    [17] YANG Yong, CHEN Qiong, FENG Yuan, et al. MIANet: Aggregating unbiased instance and general information for few-shot semantic segmentation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023. doi: 10.1109/CVPR52729.2023.00689.
    [18] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]. The 38th International Conference on Machine Learning, 2021.
    [19] LIN Bingqian, ZHU Yi, CHEN Zicong, et al. ADAPT: Vision-language navigation with modality-aligned action prompts[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022. doi: 10.1109/CVPR52688.2022.01496.
    [20] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017. doi: 10.1109/CVPR.2017.106.
    [21] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4.
    [22] WANG Junjue, ZHENG Zhuo, MA Ailong, et al. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation[C]. The 1st Neural Information Processing Systems Track on Datasets and Benchmarks, 2021.
    [23] KRIZHEVSKY A. Convolutional deep belief networks on cifar-10[J]. Unpublished Manuscript, 2010, 40(7): 1–9.
    [24] HENDRYCKS D and DIETTERICH T G. Benchmarking neural network robustness to common corruptions and perturbations[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019.
    [25] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. The 9th International Conference on Learning Representations, 2021.
    [26] OQUAB M, DARCET T, MOUTAKANNI T, et al. DINOv2: Learning robust visual features without supervision[J]. Transactions on Machine Learning Research Journal, 2024.
    [27] GESMUNDO A and DEAN J. An evolutionary approach to dynamic introduction of tasks in large-scale multitask learning systems[J]. arXiv preprint arXiv: 2205.12755, 2022.
    [28] YUAN Kun, GUO Shaopeng, LIU Ziwei, et al. Incorporating convolution designs into visual transformers[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021. doi: 10.1109/ICCV48922.2021.00062.
    [29] DAGLI R. Astroformer: More Data Might not be all you need for Classification[J]. arXiv preprint arXiv: 2304.05350, 2023.
    [30] LEE M, KIM D, and SHIM H. Threshold matters in WSSS: Manipulating the activation for the robust and accurate segmentation model against thresholds[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022. doi: 10.1109/CVPR52688.2022.00429.
    [31] RONG Shenghai, TU Bohai, WANG Zilei, et al. Boundary-enhanced Co-training for weakly supervised semantic segmentation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023. doi: 10.1109/CVPR52729.2023.01875.
    [32] CHEN Zhaozheng and SUN Qianru. Extracting class activation maps from non-discriminative features as well[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023. doi: 10.1109/CVPR52729.2023.00306.
    [33] HAN W, KANG S, CHOO K, et al. CoBra: Complementary branch fusing class and semantic knowledge for robust weakly supervised semantic segmentation[J]. arXiv preprint arXiv: 2403.08801, 2024.
    [34] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017. doi: 10.1109/ICCV.2017.74.
    [35] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018. doi: 10.1007/978-3-030-01234-2_49.
    [36] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021. doi: 10.1109/ICCV48922.2021.00986.
    [37] WANG Libo, LI Rui, DUAN Chenxi, et al. A novel transformer based semantic segmentation scheme for fine-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6506105. doi: 10.1109/LGRS.2022.3143368.
    [38] WANG Libo, LI Rui, ZHANG Ce, et al. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196–214. doi: 10.1016/j.isprsjprs.2022.06.008.
    [39] CHEN Yuxia, FANG Pengcheng, YU Jianhui, et al. Hi-ResNet: Edge detail enhancement for high-resolution remote sensing segmentation[J]. arXiv preprint arXiv: 2305.12691, 2023.
    [40] TIAN Zhuotao, ZHAO Hengshuang, SHU M, et al. Prior guided feature enrichment network for few-shot segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 1050–1065. doi: 10.1109/TPAMI.2020.3013717.
    [41] WANG Haohan, LIU Liang, ZHANG Wuhao, et al. Iterative few-shot semantic segmentation from image label text[C]. The 31st International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022. doi: 10.24963/ijcai.2022/193.
    [42] LIU Jie, BAO Yanqi, XIE Guosen, et al. Dynamic prototype convolution network for few-shot semantic segmentation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022. doi: 10.1109/CVPR52688.2022.01126.
    [43] LANG Chunbo, CHENG Gong, TU Binfei, et al. Learning what not to segment: A new perspective on few-shot segmentation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022. doi: 10.1109/CVPR52688.2022.00789.
    [44] LIU Yuanwei, LIU Nian, CAO Qinglong, et al. Learning non-target knowledge for few-shot semantic segmentation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022. doi: 10.1109/CVPR52688.2022.01128.
    [45] CHEN Hao, DONG Yonghan, LU Zheming, et al. Pixel matching network for cross-domain few-shot segmentation[C]. 2024 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2024. doi: 10.1109/WACV57701.2024.00102.
    [46] ZHANG Zilun, ZHAO Tiancheng, GUO Yulong, et al. RS5M and GeoRSCLIP: A large-scale vision- language dataset and a large vision-language model for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5642123. doi: 10.1109/TGRS.2024.3449154.
    [47] LI Kaiyu, LIU Ruixun, CAO Xiangyong, et al. SegEarth-OV: Towards training-free open-vocabulary segmentation for remote sensing images[J]. arXiv preprint arXiv: 2410.01768, 2024.
    [48] 方秀秀, 黄旻, 王德志, 等. 基于高程和地物光谱约束的多光谱图像预处理算法[J]. 半导体光电, 2020, 41(2): 264–267, 272. doi: 10.16818/j.issn1001-5868.2020.02.023.

    FANG Xiuxiu, HUANG Min, WANG Dezhi, et al. Multispectral image preprocessing based on elevation and surface feature spectrum constraints[J]. Semiconductor Optoelectronics, 2020, 41(2): 264–267, 272. doi: 10.16818/j.issn1001-5868.2020.02.023.
    [49] WANG Jingdong, SUN Ke, CHENG Tianheng, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349–3364. doi: 10.1109/TPAMI.2020.2983686.
  • 加载中
图(14) / 表(10)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  39
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-02
  • 修回日期:  2025-05-21
  • 网络出版日期:  2025-05-29

目录

    /

    返回文章
    返回