高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机会无人机辅助数据收集的组网和资源分配方法

孙伟皓 王海 秦蓁 屈毓锛

孙伟皓, 王海, 秦蓁, 屈毓锛. 机会无人机辅助数据收集的组网和资源分配方法[J]. 电子与信息学报. doi: 10.11999/JEIT241053
引用本文: 孙伟皓, 王海, 秦蓁, 屈毓锛. 机会无人机辅助数据收集的组网和资源分配方法[J]. 电子与信息学报. doi: 10.11999/JEIT241053
SUN Weihao, WANG Hai, QIN Zhen, QU Yuben. Networking and Resource Allocation Methods for Opportunistic UAV-assisted Data Collection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241053
Citation: SUN Weihao, WANG Hai, QIN Zhen, QU Yuben. Networking and Resource Allocation Methods for Opportunistic UAV-assisted Data Collection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241053

机会无人机辅助数据收集的组网和资源分配方法

doi: 10.11999/JEIT241053
基金项目: 国家自然科学基金(62171465)
详细信息
    作者简介:

    孙伟皓:男,博士生,研究方向为网络规划

    王海:男,教授,研究方向为无线自组网和软件定义网络

    秦蓁:女,讲师,研究方向为边缘计算和组合优化

    屈毓锛:男,副研究员,研究方向为边缘计算和联邦学习

    通讯作者:

    王海 hai_wang@aeu.edu.cn

  • 中图分类号: TN915.03

Networking and Resource Allocation Methods for Opportunistic UAV-assisted Data Collection

Funds: The National Natural Science Foundation of China (62171465)
  • 摘要: 配备存储部件的机会无人机打开了数据传输的机会时间窗口,在低空数据收集系统中呈现巨大的潜力。为了提高数据收集效率,移动用户可以主动组网,将数据预先集聚到具备位置优势的簇头节点,由簇头节点负责上传,实现时空维度的流量塑形。该文研究了机会无人机辅助数据收集的组网和资源分配方法。具体而言,如何根据机会无人机的既定航迹,通过联合优化用户的子网数据传输策略、子网资源分配策略和子网形成策略,最大化全网数据上传总量。上述问题高度耦合且具有海量的状态空间,较难求解。该文通过推导闭式表达式求解子网数据传输和资源分配子问题,通过联盟博弈求解子网形成子问题。最终提出了一种迭代优化算法来获得具有高效、可靠、自组织和低复杂度的解决方案。仿真结果表明所提方法能够有效提升数据收集效率。同独立上传策略以及基于距离聚类和传统联盟博弈组网策略相比,所提方案的数据上传总量分别提升了56.3%,51.6%和17.8%。
  • 图  1  系统模型

    图  2  组网策略示意图

    图  3  数据采集和上传性能对比

    图  4  可靠传输策略和传输距离的关系

    图  5  不同算法的性能对比

    1  机会无人机辅助的组网和资源分配算法

     输入:用户的数据量${\varGamma _i}$,用户移动轨迹$l_i^t$,无人机航迹$l_m^t$,基
     本参数$ {\mathcal{T}^{\rm g}},{\mathcal{T}^{\mathrm{u}}},{d_{{\mathrm{th}}}},{B_0} $
     输出:子网数据传输策略${\boldsymbol{Q}}$,子网资源分配策略${\boldsymbol{B}}$和子网形成
     策略${\bf{Co}}$
     (1) 初始化组网分组,每个节点自成一个联盟
     (2) FOR $ t = 1:{T_{{\mathrm{iter}}}} $
     (3)  $i = \text{mod} (t,U) + 1$
     (4)  用户${u_i}$离开当前联盟${\text{C}}{{\text{o}}_n}$探索加入联盟$C{o_{n'}}$
     (5)  簇头$u_0^n$和$u_0^{n'}$根据$ \bar Q_{i,n}^*({\Pr ^{{\text{req}}}}) $、$ \bar Q_{i,n'}^*({\Pr ^{{\text{req}}}}) $和式(26)更
        新子网资源分配策略
     (6)  用户${u_i}$根据式(20)更新数据传输策略
     (7)  If 联盟切换满足互利准则(33)do
     (8)   联盟结构变更,$ {{\mathrm{Co}}_n} = {{\mathrm{Co}}_n}\backslash \{ {u_i}\} ,{{\mathrm{Co}}_{n'}} = {{\mathrm{Co}}_{n'}} \cup \{ {u_i}\} $
     (9)  End If
     (10) End For
    下载: 导出CSV
  • [1] 吴启晖, 董超, 贾子晔, 等. 低空智联网组网与控制理论方法[J]. 航空学报, 2024, 45(3): 28809. doi: 10.7527/S1000-6893.2023.28809.

    WU Qihui, DONG Chao, JIA Ziye, et al. Networking and control mechanism for low-altitude intelligent networks[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28809. doi: 10.7527/S1000-6893.2023.28809.
    [2] LIU Dianxiong, XU Yuhua, WANG Jinlong, et al. Opportunistic UAV utilization in wireless networks: Motivations, applications, and challenges[J]. IEEE Communications Magazine, 2020, 58(5): 62–68. doi: 10.1109/MCOM.001.1900687.
    [3] HARDES T and SOMMER C. Opportunistic airborne virtual network infrastructure for urban wireless networks[J]. Computer Communications, 2023, 208: 220–230. doi: 10.1016/j.comcom.2023.06.003.
    [4] ZHONG Xijian, GUO Yan, LI Ning, et al. Joint relay assignment and channel allocation for opportunistic UAVs-aided dynamic networks: A mood-driven approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15019–15034. doi: 10.1109/TVT.2020.3032125.
    [5] LIU Yitong, YAN Junjie, and ZHAO Xiaohui. Deep-reinforcement-learning-based optimal transmission policies for opportunistic UAV-aided wireless sensor network[J]. IEEE Internet of Things Journal, 2022, 9(15): 13823–13836. doi: 10.1109/JIOT.2022.3142269.
    [6] LI Bowen and CHEN Junting. Large timescale optimization for communications over aerial ad hoc networks with predetermined trajectories[J]. IEEE Transactions on Communications, 2024, 72(10): 6371–6385. doi: 10.1109/TCOMM.2024.3393980.
    [7] SUN Zhuo, WEI Zhiqiang, YANG Nan, et al. Two-tier communication for UAV-enabled massive IoT systems: Performance analysis and joint design of trajectory and resource allocation[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 1132–1146. doi: 10.1109/JSAC.2020.3018855.
    [8] KANG M and JEON S W. Energy-efficient data aggregation and collection for multi-UAV-enabled IoT networks[J]. IEEE Wireless Communications Letters, 2024, 13(4): 1004–1008. doi: 10.1109/LWC.2024.3355934.
    [9] CHAI Rong, GAO Yifan, SUN Ruijin, et al. Time-oriented joint clustering and UAV trajectory planning in UAV-assisted WSNs: Leveraging parallel transmission and variable velocity scheme[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12092–12106. doi: 10.1109/TITS.2023.3299842.
    [10] GHDIRI O, JAAFAR W, ALFATTANI S, et al. Offline and online UAV-enabled data collection in time-constrained IoT networks[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 1918–1933. doi: 10.1109/TGCN.2021.3104801.
    [11] LIN Xin, LIU Aijun, NI Wanli, et al. Sum rate maximization of ad-hoc network in adversarial communication environments: A game-theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 17905–17910. doi: 10.1109/TVT.2024.3416129.
    [12] QIN Zhen, WEI Zhenhua, QU Yuben, et al. AoI-aware scheduling for air-ground collaborative mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 2989–3005. doi: 10.1109/TWC.2022.3215795.
    [13] ZHOU Jianshan, TIAN Daxin, WANG Yunpeng, et al. Reliability-optimal cooperative communication and computing in connected vehicle systems[J]. IEEE Transactions on Mobile Computing, 2020, 19(5): 1216–1232. doi: 10.1109/TMC.2019.2907491.
    [14] 韩晨, 刘爱军, 安康, 等. 干扰环境下基于博弈论的无人机群部署与组网方法[J]. 电子与信息学报, 2022, 44(3): 860–870. doi: 10.11999/JEIT210992.

    HAN Chen, LIU Aijun, AN Kang, et al. Deployment and networking methods of UAV swarm in jamming environments based on game theory[J]. Journal of Electronics & Information Technology, 2022, 44(3): 860–870. doi: 10.11999/JEIT210992.
    [15] MOZAFFARI M, SAAD W, BENNIS M, et al. Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 8052–8066. doi: 10.1109/TWC.2017.2756644.
    [16] SANDHOLM T, LARSON K, ANDERSSON M, et al. Coalition structure generation with worst case guarantees[J]. Artificial Intelligence, 1999, 111(1/2): 209–238. doi: 10.1016/S0004-3702(99)00036-3.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2025-02-12
  • 网络出版日期:  2025-02-21

目录

    /

    返回文章
    返回