高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进DETR算法的焊缝缺陷检测方法研究

戴铮 刘骁佳 潘泉

戴铮, 刘骁佳, 潘泉. 基于改进DETR算法的焊缝缺陷检测方法研究[J]. 电子与信息学报, 2025, 47(7): 2298-2307. doi: 10.11999/JEIT241009
引用本文: 戴铮, 刘骁佳, 潘泉. 基于改进DETR算法的焊缝缺陷检测方法研究[J]. 电子与信息学报, 2025, 47(7): 2298-2307. doi: 10.11999/JEIT241009
DAI Zheng, LIU Xiaojia, PAN Quan. Research on Weld Defect Detection Method Based on Improved DETR[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2298-2307. doi: 10.11999/JEIT241009
Citation: DAI Zheng, LIU Xiaojia, PAN Quan. Research on Weld Defect Detection Method Based on Improved DETR[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2298-2307. doi: 10.11999/JEIT241009

基于改进DETR算法的焊缝缺陷检测方法研究

doi: 10.11999/JEIT241009 cstr: 32379.14.JEIT241009
基金项目: 上海市浦江人才计划项目(20PJ1405000)
详细信息
    作者简介:

    戴铮:男,博士,研究方向为深度学习、图像处理、无损检测等

    刘骁佳:男,博士,研究方向为大数据、深度学习

    潘泉:男,博士,教授,研究方向为模式识别与智能系统等

    通讯作者:

    潘泉 panquan2023@163.com

  • 中图分类号: TJ86

Research on Weld Defect Detection Method Based on Improved DETR

Funds: Shanghai Pujiang Program (20PJ1405000)
  • 摘要: 焊接技术在工业制造中占据着举足轻重的作用,而X射线图像评定是保障焊缝内部质量的关键检测方式。鉴于焊缝X射线图像评定环节中存在工作量大、效率难以提升等问题,该文提出一种基于DETR网络改进的CADETR焊缝缺陷检测模型。此模型以DETR网络为基础,设计了CEC网络结构,拓宽了卷积核的感受野,增强了模型对于不同尺度缺陷的特征提取性能;同时设计了AFPN网络,该结构能够有效融合高分辨率与低分辨率的多尺度特征图;设计了PCE-Loss损失函数,增大了模型对缺陷图像预测错误的损失惩罚。构建了大型结构件焊缝X射线图像数据集,经过测试CADETR模型展现出良好的缺陷检测性能,其平均精度达到了91.6%,可作为后续焊缝缺陷智能检测系统的算法基础。
  • 图  1  CADETR网络结构

    图  2  Transformer结构

    图  3  复合扩展卷积

    图  4  3×3扩展卷积核感受野

    图  5  AFPN网络结构

    图  6  焊缝X射线图像

    图  7  损失值变化

    图  8  缺陷检测结果

    表  1  Resnet101网络

    Layer name Resnet101
    Conv1 conv,7×7,64,stride 2
    Conv2 maxpool,3×3, stride 2

    $ \left[ {\begin{array}{*{20}{l}} {{\text{conv}},1 \times 1,64} \\ {{\text{conv}},3 \times 3,64} \\ {{\text{conv}},1 \times 1,256} \end{array}} \right] \times 3 $
    Conv3 $ \left[ {\begin{array}{*{20}{l}} {{\text{conv}},1 \times 1,128} \\ {{\text{conv}},3 \times 3,128} \\ {{\text{conv}},1 \times 1,512} \end{array}} \right] \times 4 $
    Conv4 $ \left[ {\begin{array}{*{20}{l}} {{\text{conv}},1 \times 1,256} \\ {{\text{conv}},3 \times 3,256} \\ {{\text{conv}},1 \times 1,1024} \end{array}} \right] \times 23 $
    Conv5 $ \left[ {\begin{array}{*{20}{l}} {{\text{conv}},1 \times 1,512} \\ {{\text{conv}},3 \times 3,512} \\ {{\text{conv}},1 \times 1,2048} \end{array}} \right] \times 3 $
    下载: 导出CSV

    表  2  模型运行环境配置

    软硬件名称 具体配置
    CPU Intel-6248R
    GPU RTXA6000
    内存大小 128 GB
    系统 Centos7.5
    深度学习框架 pytorch1.9.0
    编程语言 Python3.9
    下载: 导出CSV

    表  3  各模型缺陷检测结果

    算法名称PRmAPFPS
    Faster RCNN81.685.678.931
    ECASNet79.883.577.449
    GeRcnn82.685.181.339
    DETR83.987.582.738
    MDCBNet85.692.484.733
    HPRT-DETR87.693.687.936
    YOLOV1188.994.188.159
    CADETR92.798.391.628
    下载: 导出CSV

    表  4  消融实验

    CEC AFPN PCE-Loss P R mAP fps
    83.9 87.5 82.7 38
    88.9 90.6 87.3 34
    88.1 88.3 87.2 33
    86.8 89.5 86.1 38
    89.8 94.1 88.4 34
    89.2 93.4 88.9 33
    90.3 96.1 89.8 28
    92.7 98.3 91.6 28
    下载: 导出CSV
  • [1] SONAR T, BALASUBRAMANIAN V, MALARVIZHI S, et al. Maximizing strength and corrosion resistance of InterPulsed TIG welded Superalloy 718 joints by RSM for aerospace applications[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 474–493. doi: 10.1016/j.cirpj.2021.07.013.
    [2] LIU Zhao, LI Xiaoqiang, PAN Lihua, et al. Effects of weld penetration modes on laser welding characteristics of a novel ultra-high strength steel for aerospace application[J]. Journal of Manufacturing Processes, 2023, 90: 111–124. doi: 10.1016/j.jmapro.2023.02.003.
    [3] AGIWAL H, ALI ANSARI M, FRANKE D, et al. Material flow visualization during friction stir welding using high-speed X-ray imaging[J]. Manufacturing Letters, 2022, 34: 62–66. doi: 10.1016/j.mfglet.2022.08.016.
    [4] SCHRICKER K, HELLWIG P, SCHMIDT L, et al. Insight into keyhole and melt pool dynamics in laser welding of zinc-coated steels by means of high-speed synchrotron X-ray imaging[J]. Procedia CIRP, 2024, 124: 454–459. doi: 10.1016/j.procir.2024.08.152.
    [5] GEORGE G S, RAJ MISHRA P, SINHA P, et al. COVID-19 detection on chest X-ray images using Homomorphic Transformation and VGG inspired deep convolutional neural network[J]. Biocybernetics and Biomedical Engineering, 2023, 43(1): 1–16. doi: 10.1016/J.BBE.2022.11.003.
    [6] UPARKAR O, BHARTI J, PATERIYA R K, et al. Vision transformer outperforms deep convolutional neural network-based model in classifying X-ray images[J]. Procedia Computer Science, 2023, 218: 2338–2349. doi: 10.1016/J.PROCS.2023.01.209.
    [7] YUAN Gaojing, CHEN Linshu, CAI Jiahong, et al. A comprehensive overview of object detection based on deep learning[C]. Proceedings of 2024 10th IEEE International Conference on Intelligent Data and Security, New York, America, 2024: 80–85. doi: 10.1109/IDS62739.2024.00023.
    [8] KARBOUJ B, TOPALIAN-RIVAS G A, and KRÜGER J. Comparative performance evaluation of one-stage and two-stage object detectors for screw head detection and classification in disassembly processes[J]. Procedia CIRP, 2024, 122: 527–532. doi: 10.1016/J.PROCIR.2024.01.077.
    [9] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [10] CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake, USA, 2018: 6154–6162. doi: 10.1109/CVPR.2018.00644.
    [11] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [12] GHEORGHE C, DUGULEANA M, BOBOC R G, et al. Analyzing real-time object detection with YOLO algorithm in automotive applications: A review[J]. Computer Modeling in Engineering & Sciences, 2024, 141(3): 1939–1981. doi: 10.32604/CMES.2024.054735.
    [13] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. Proceedings of the 16th European Conference on Computer Vision-ECCV 2020, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [14] NING Pin, JIN Jin, XU Yuanping, et al. Enhanced detection of glass insulator defects using improved generative modeling and faster RCNN[J]. Procedia CIRP, 2024, 129: 31–36. doi: 10.1016/j.procir.2024.10.007.
    [15] SONWANE S and CHIDDARWAR S. Enhancing weld defect detection and classification with MDCBNet: A multi-scale dense cross block network for improved explainability[J]. NDT & E International, 2024, 142: 103029. doi: 10.1016/j.ndteint.2023.103029.
    [16] ZHAO Wenjie, LI Dan, and XU Feihu. A lightweight weld defect recognition algorithm based on convolutional neural networks[J]. Pattern Analysis and Applications, 2024, 27(3): 94. doi: 10.1007/S10044-024-01315-7.
    [17] GE Qianfeng, YUAN Hao, ZHANG Qinglin, et al. Hyper-Progressive Real-Time Detection Transformer (HPRT-DETR) algorithm for defect detection on metal bipolar plates[J]. International Journal of Hydrogen Energy, 2024, 74: 49–55. doi: 10.1016/J.IJHYDENE.2024.06.028.
    [18] WEI Wanmian, YAN Huang, ZHENG Junchi, et al. YOLOv11-based multi-task learning for enhanced bone fracture detection and classification in X-ray images[J]. Journal of Radiation Research and Applied Sciences, 2025, 18(1): 101309. doi: 10.1016/J.JRRAS.2025.101309.
    [19] 郭柏麟, 黄立威, 路遥, 等. 基于脉冲神经网络微调方法的遥感图像目标检测[J]. 遥感学报, 2024, 28(7): 1702–1712. doi: 10.11834/jrs.20243272.

    GUO Bailin, HUANG Liwei, LU Yao, et al. Research on Spiking Neural Network fine-tuning method for object detection in remote sensing images[J]. National Remote Sensing Bulletin, 2024, 28(7): 1702–1712. doi: 10.11834/jrs.20243272.
    [20] SOARES R A A, DE OLIVEIRA A C M, DE ALMEIDA RIBEIRO P R, et al. Firearm detection using DETR with multiple self-coordinated neural networks[J]. Neural Computing and Applications, 2024, 36(35): 22013–22022. doi: 10.1007/s00521-024-10373-1.
    [21] 赵楚, 段先华, 苏俊楷. 改进Faster RCNN的瓷砖表面瑕疵检测研究[J]. 计算机工程与应用, 2023, 59(14): 201–208. doi: 10.3778/j.issn.1002-8331.2203-0414.

    ZHAO Chu, DUAN Xianhua, and SU Junkai. Research on ceramic tile surface defect detection by improved Faster RCNN[J]. Computer Engineering and Applications, 2023, 59(14): 201–208. doi: 10.3778/j.issn.1002-8331.2203-0414.
    [22] YANG Xiaohui, ZHANG Haoran, QU Zhe, et al. Video frame interpolation via residual blocks and feature pyramid networks[J]. IET Image Processing, 2023, 17(4): 1060–1070. doi: 10.1049/ipr2.12695.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  247
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2025-04-10
  • 网络出版日期:  2025-04-25
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回