高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米波通信中基于阻挡预测的无人机抗阻挡轨迹设计

马雪 解解 董洋瑞 李小亚 贺晨 范建平

马雪, 解解, 董洋瑞, 李小亚, 贺晨, 范建平. 毫米波通信中基于阻挡预测的无人机抗阻挡轨迹设计[J]. 电子与信息学报, 2025, 47(4): 1093-1103. doi: 10.11999/JEIT240970
引用本文: 马雪, 解解, 董洋瑞, 李小亚, 贺晨, 范建平. 毫米波通信中基于阻挡预测的无人机抗阻挡轨迹设计[J]. 电子与信息学报, 2025, 47(4): 1093-1103. doi: 10.11999/JEIT240970
MA Xue, XIE Xie, DONG Yangrui, LI Xiaoya, HE Chen, FAN Jianping. Blockage Prediction Based UAV Anti-blockage Trajectory Design in Millimeter-Wave Communication Network[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1093-1103. doi: 10.11999/JEIT240970
Citation: MA Xue, XIE Xie, DONG Yangrui, LI Xiaoya, HE Chen, FAN Jianping. Blockage Prediction Based UAV Anti-blockage Trajectory Design in Millimeter-Wave Communication Network[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1093-1103. doi: 10.11999/JEIT240970

毫米波通信中基于阻挡预测的无人机抗阻挡轨迹设计

doi: 10.11999/JEIT240970
基金项目: 国家自然科学基金(61901375,U24B20130),陕西省重点领域科技创新团队(2023-CX-TD-04),东南大学移动通信全国重点实验室开放研究基金(2025D05)
详细信息
    作者简介:

    马雪:女,博士生,研究方向为毫米波无人机通信

    解解:男,助理研究员,研究方向为无线通信与信号处理

    董洋瑞:男,博士生,研究方向为无人机通信与定位

    李小亚:女,副教授,研究方向为毫米波传输、无人机通信等

    贺晨:男,教授,博士生导师,研究方向为无线通信、信号处理等

    范建平:男,教授,博士生导师,研究方向为图像/视频隐私保护、大规模深度学习等

    通讯作者:

    贺晨 chenhe@nwu.edu.cn

  • 中图分类号: TN928

Blockage Prediction Based UAV Anti-blockage Trajectory Design in Millimeter-Wave Communication Network

Funds: The National Natural Science Foundation of China (61901375, U24B20130), Shaanxi Innovation Team (2023-CX-TD-04), The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2025D05)
  • 摘要: 无人机毫米波通信能够在多种按需服务场景中提供高速数据传输。然而,毫米波信号易受障碍物阻挡,使得路径损耗大,严重影响系统吞吐量性能。为解决这一问题,该文提出一种基于阻挡预测的无人机抗阻挡轨迹规划方法,在障碍物地理信息(包括位置、形状、大小)未知且移动用户定位存在误差的情况下,准确预测链路阻挡并规划无人机飞行轨迹。通过设计引入定位误差泰勒展开项的几何特征向量,对用户与无人机之间的链路阻挡进行预测,进而规划无人机的3维轨迹以有效避免阻挡,提升用户吞吐量。仿真结果表明,针对用户定位误差设计的特征向量能够提高阻挡预测精度。与基于概率阻挡模型的现有算法相比,所提基于阻挡预测的无人机抗阻挡轨迹规划算法尽管复杂度较高,但能够获得更高吞吐量,实现了复杂度与性能之间的均衡。
  • 图  1  城市环境无人机毫米波通信系统模型

    图  2  基于阻挡预测的无人机抗阻挡轨迹设计算法的结构

    图  3  用户定位误差引起的无人机与用户之间角度偏差的示意图

    图  4  无人机移动方向

    图  5  阻挡预测精度对比

    图  6  两种不同城市环境中毫米波通信网络的无人机3维轨迹示例

    图  7  不同轨迹规划算法在环境1、环境2下的性能对比

    图  8  不同轨迹规划算法下用户总速率的比较

    图  9  不同轨迹规划算法下用户吞吐量的比较

    表  1  系统参数

    参数 含义
    $ u(n) $ 无人机在第$ n $个时隙的坐标
    $ N $ 无人机飞行时隙数
    $ {\delta _{\text{t}}} $ 时隙持续时间
    $a(n),b(n),z(n)$ 无人机在第$ n $个时隙的横、
    纵坐标及高度
    ${\omega _k}(n)$ 无人机和用户之间的阻挡状态
    $ {\text{P}}{{\text{L}}_k}(n) $ 第$ k $个用户在第$ n $个时隙的路径损耗
    $ {\text{P}}{{\text{L}}^{\text{L}}}(n) $ LoS链路的路径损耗
    $ {\text{P}}{{\text{L}}^{\text{N}}}(n) $ NLoS链路的路径损耗
    ${d_k}(n)$ 无人机与用户之间的3维距离
    $ {R_k}(n) $ 第$ k $个用户在第$ n $个时隙接收到的数据速率
    ${\varGamma _k}(n)$ 用户$ k $的接收信噪比
    $R$ 用户的总吞吐量
    ${{\boldsymbol{u}}_{\text{I}}}$ 无人机的起点
    ${{\boldsymbol{u}}_{\text{F}}}$ 无人机的终点
    $ {v_{{\text{max}}}} $ 无人机允许的最大飞行速度
    ${a_k}(n),{b_k}(n),{H_k}(n)$ 用户$ k $在第$ n $个时隙的横、
    纵坐标及高度
    $\Delta {a_k}(n),\Delta {b_k}(n),\Delta {H_k}(n)$ 用户$ k $在第$ n $个时隙的位置估计
    随机误差
    ${{\boldsymbol{l}}_k}(n)$ 用户$ k $在第$ n $个时隙的坐标
    $ {a_{\min }} $, $ {a_{\max }} $ 无人机横坐标的最小值、最大值
    $ {b_{\min }} $, $ {b_{\max }} $ 无人机纵坐标的最小值、最大值
    $ {z_{{\text{min}}}} $, $ {z_{{\text{max}}}} $ 无人机飞行高度的最小值、最大值
    下载: 导出CSV

    1  抗阻挡无人机3维轨迹设计

     输入:设定最大迭代次数$E$;初始化评估Q网络与目标Q网络,
     确保两者具有相同的初始化参数;利用历史数据训练的阻挡预测
     模型。
     输出:无人机的轨迹${\boldsymbol{u}}(n)$与阻挡预测模型
     (1) for e = 1, 2,$ \cdots $, E
     (2)  初始化无人机、用户与目的地位置
     (3)  for n = 1, 2, $ \cdots $, N
     (4)   根据$ \varepsilon $-贪婪策略选择动作${\boldsymbol{\vartheta}} (n)$
     (5)   计算特征向量并预测阻挡状态${\omega _k}(n)$
     (6)   若NLoS链路数量>LoS链路数量,并且未遍历所有可选
         择动作则回到步骤(4);否则,执行下一步
     (7)   执行动作并观测下一状态${\boldsymbol{s}}(n + 1)$,根据公式(14)计算奖
         励$r(n)$,并收集无人机或用户在新位置的实际阻挡状态
     (8)   更新评估Q网络参数
     (9)  end for
     (10) 每隔${E_{\text{t}}}$次迭代,更新目标Q网络参数
     (11) 每隔${E_{\text{b}}}$次迭代,若收集的数据新增且阻挡预测精度低于
        阈值,则更新阻挡预测模型;否则,不更新。
     (12) end for
    下载: 导出CSV

    表  2  仿真参数设置

    参数 取值
    LoS路径损耗参数${\alpha ^{\text{L}}},{\beta ^{\text{L}}},{\sigma _{\text{L}}}$(dB) 61.4, 2, 5.8
    NLoS路径损耗参数$ {\alpha ^{\text{N}}},{\beta ^{\mathrm{N}}},{\sigma _{\text{N}}} $(dB) 72, 2.92, 8.7
    LoS链路的小尺度衰落参数${m_{\text{L}}}$ 3
    NLoS链路的小尺度衰落参数${m_{\text{N}}}$ 2
    噪声功率谱密度${N_0}$(dBm/Hz) –174
    折扣因子$\gamma $ 0.98
    初始探索率$ \varepsilon $ 0.5
    探索衰减速率$\alpha $ 0.998
    奖励设置参数$ {\varepsilon}_{\text{rd}} $ ${10^{ - 3}}$
    用户数量$K$ 10
    下载: 导出CSV

    表  3  各算法复杂度比较

    本文BP_Tay
    +DDQN
    BP_NoTay
    +DDQN
    PBM
    +DDQN
    BP_Tay
    +Q-learning
    BP_NoTay
    +Q-learning
    PBM
    +Q-learning
    $O( \cdot )$ $ \begin{gathered} O(IMD + D{h_1}{h_2} \cdot \\ BEN|V||S|) \\ \end{gathered} $ $\begin{gathered} O(IMD + D{h_1}{h_2} \cdot \\ BEN|V||S|) \\ \end{gathered} $ $O({h_2}BEN|V||S|)$ $\begin{gathered} O(IMD + D{h_1} \\ EN|V||S|) \\ \end{gathered} $ $\begin{gathered} O(IMD + D{h_1} \\ EN|V||S|) \\ \end{gathered} $ $ O(EN|V||S|) $
    下载: 导出CSV
  • [1] ZHOU Di, SHENG Min, LI Jiandong, et al. Aerospace integrated networks innovation for empowering 6G: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 975–1019. doi: 10.1109/COMST.2023.3245614.
    [2] CHEN Wenyun, LIU Chenxi, WANG Wei, et al. Adaptive hybrid beamforming for UAV mmWave communications against asymmetric jitter[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 9432–9445. doi: 10.1109/TWC.2024.3362384.
    [3] ZHU Yishi, MAO Bomin, and KATO N. On a novel high accuracy positioning with intelligent reflecting surface and unscented Kalman filter for intelligent transportation systems in B5G[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(1): 68–77. doi: 10.1109/JSAC.2023.3322805.
    [4] AL-HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/LWC.2014.2342736.
    [5] ZHU Lipeng, ZHANG Jun, XIAO Zhenyu, et al. Multi-UAV aided millimeter-wave networks: Positioning, clustering, and beamforming[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4637–4653. doi: 10.1109/TWC.2021.3131580.
    [6] YU Xiangbin, HUANG Xu, WANG Kezhi, et al. Joint design of power allocation, beamforming, and positioning for energy-efficient UAV-aided multiuser millimeter-wave systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 2930–2945. doi: 10.1109/JSAC.2022.3196111.
    [7] CHEN Yujia, LIAO Kaimin, KU Menglin, et al. Multi-agent reinforcement learning based 3D trajectory design in aerial-terrestrial wireless caching networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 8201–8215. doi: 10.1109/TVT.2021.3094273.
    [8] CHEN Wei, CHANG Dengkai, and CHEN Yujia. Trajectory control in self-sustainable UAV-aided mmWave networks: A constrained multi-agent reinforcement learning approach[C]. 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, South, Korea, 2022: 1017–1022. doi: 10.1109/ICCWorkshops53468.2022.9814650.
    [9] TONG Ziheng, WANG Jingjing, HOU Xiangwang, et al. UAV-Assisted covert federated learning over mmWave massive MIMO[J]. IEEE Transactions on Wireless Communications, 2024, 23(9): 11785–11798. doi: 10.1109/TWC.2024.3384957.
    [10] NGUYEN M D, LE L B, and GIRARD A. Integrated UAV trajectory control and resource allocation for UAV-based wireless networks with co-channel interference management[J]. IEEE Internet of Things Journal, 2021, 9(14): 12754–12769. doi: 10.1109/JIOT.2021.3138374.
    [11] KHAWAJA W, GUVENC I, MATOLAK D W, et al. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2361–2391. doi: 10.1109/COMST.2019.2915069.
    [12] ZENG Shuhao, ZHANG Hongliang, DI Boya, et al. Trajectory optimization and resource allocation for OFDMA UAV relay networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6634–6647. doi: 10.1109/TWC.2021.3075594.
    [13] 闫莉, 岳涛, 方旭明. 铁路应急场景下无人机通信感知一体化无线网络资源智能分配算法[J]. 电子与信息学报, 2024, 46(9): 3510–3519. doi: 10.11999/JEIT240254.

    YAN Li, YUE Tao, and FANG Xuming. Intelligent wireless resource allocation algorithm for unmanned aerial vehicle integrated communication and sensing networks in railway emergency scenarios[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3510–3519. doi: 10.11999/JEIT240254.
    [14] DABIRI M T, HASNA M, ALTHUNIBAT S, et al. Los coverage analysis for UAV-based THz communication networks: Toward 3-D visualization of wireless networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 8726–8743. doi: 10.1109/TAES.2024.3440274.
    [15] XIA W, RANGAN S, MEZZAVILLA M, et al. Generative neural network channel modeling for millimeter-wave UAV communication[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9417–9431. doi: 10.1109/TWC.2022.3176480.
    [16] MA Xue, HE Chen, LI Xiaoya, et al. Low cost anti-blockage UAV 3D trajectory design in millimeter-wave communication networks[C]. 2025 14th International Conference on Communications, Circuits and Systems (ICCCAS), Wuhan, China, 2025.
    [17] XU Dongfang, SUN Yan, NG D W K, et al. Multiuser MISO UAV communications in uncertain environments with no-fly zones: Robust trajectory and resource allocation design[J]. IEEE Transactions on Communications, 2020, 68(5): 3153–3172. doi: 10.1109/TCOMM.2020.2970043.
    [18] AKDENIZ M R, LIU Yuanpeng, SAMIMI M K, et al. Millimeter wave channel modeling and cellular capacity evaluation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1164–1179. doi: 10.1109/JSAC.2014.2328154.
    [19] MA Cunyan, LI Xiaoya, HE Chen, et al. Coverage analysis of single-swarm mmWave UAV networks under multiple types of blockages[J]. IEEE Transactions on Communications, 2024, 72(12): 7907–7921. doi: 10.1109/TCOMM.2024.3415611.
    [20] MA Xue, HE Chen, LI Xiaoya, et al. Joint blockage prediction and UAV deployment in millimeter-wave communication networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 17881–17886. doi: 10.1109/TVT.2024.3430233.
    [21] MEI Haibo, YANG Kun, LIU Qiang, et al. 3D-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3020–3029. doi: 10.1109/TVT.2022.3143839.
    [22] ZENG Yong, XU Xiaoli, JIN Shi, et al. Simultaneous navigation and radio mapping for cellular-connected UAV with deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4205–4220. doi: 10.1109/TWC.2021.3056573.
    [23] LI Fan, HE Chen, LI Xiaoya, et al. Geometric analysis-based 3D anti-block UAV deployment for mmWave communications[J]. IEEE Communications Letters, 2022, 26(11): 2799–2803. doi: 10.1109/LCOMM.2022.3201842.
    [24] ZHONG Ruikang, LIU Xiao, LIU Yuanwei, et al. Multi-agent reinforcement learning in NOMA-aided UAV networks for cellular offloading[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1498–1512. doi: 10.1109/TWC.2021.3104633.
    [25] LEE S, YU H, and LEE H. Multiagent Q-learning-based multi-UAV wireless networks for maximizing energy efficiency: Deployment and power control strategy design[J]. IEEE Internet of Things Journal, 2022, 9(9): 6434–6442. doi: 10.1109/JIOT.2021.3113128.
    [26] XIA Xiaochen, WANG Yurong, XU Kui, et al. Toward digitalizing the wireless environment: A unified A2G information and energy delivery framework based on binary channel feature map[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6448–6463. doi: 10.1109/TWC.2022.3149636.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  35
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-29
  • 修回日期:  2025-03-31
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回