高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本地差分隐私下基于混合分布的真值发现算法

张朋飞 安建隆 程祥 张治坤 孙笠 张吉 朱伊波

戴荣欣. 提高9显象管边缘分辨率的实验研究[J]. 电子与信息学报, 1982, 4(1): 46-52.
引用本文: 张朋飞, 安建隆, 程祥, 张治坤, 孙笠, 张吉, 朱伊波. 本地差分隐私下基于混合分布的真值发现算法[J]. 电子与信息学报. doi: 10.11999/JEIT240936
Dai Rong-Xin. AN EXPERIMENTAL INVESTIGATION FOR IMPROVEMENT OF EDGE RESOLUTION OF 9 KINESCOPE[J]. Journal of Electronics & Information Technology, 1982, 4(1): 46-52.
Citation: ZHANG Pengfei, AN Jianlong, CHENG Xiang, ZHANG Zhikun, LIU Ximeng, ZHANG Ji, ZHU Yibo. Mixture Distribution-Based Truth Discovery Algorithm under Local Differential Privacy[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240936

本地差分隐私下基于混合分布的真值发现算法

doi: 10.11999/JEIT240936
基金项目: 安徽理工大学高层次引进人才科研启动基金(2023yjrc92),云南省服务计算重点实验室开放课题(YNSC24116),国家自然科学基金青年项目(62202164)
详细信息
    作者简介:

    张朋飞:男,讲师,研究方向为数据隐私保护与可信人工智能

    安建隆:男,硕士生,研究方向为数据安全与隐私保护

    程祥:男,教授,研究方向为数据隐私保护与可信人工智能

    张治坤:男,副教授,研究方向为隐私计算、数据隐私保护和机器学习隐私与安全

    孙笠:男,副教授,研究方向为数据挖掘和机器学习

    张吉:男,教授,研究方向为数据科学、数据挖掘、机器学习以及隐私保护

    朱伊波:男,硕士生,研究方向为数据隐私保护与数据安全

    通讯作者:

    张治坤 zhikun@zju.edu.cn

  • 中图分类号: TP391

Mixture Distribution-Based Truth Discovery Algorithm under Local Differential Privacy

Funds: The Scientific Research Start-up Foundation for High-level Talents of Anhui University of Science and Technology (2023yjrc92), The Foundation of Yunnan Key Laboratory of Service Computing (YNSC24116), The National Natural Science Foundation of China (62202164)
  • 摘要: 移动群智感知是收集数据的重要手段之一,其中一个基本的问题就是如何从众多质量不同的感知数据中发现“真值”。为解决真值发现过程中可能存在的隐私泄露问题,现有方法通常结合本地差分隐私技术来对工人提交数据进行保护。然而这些方法往往没有充分考虑到数据中存在的表示工人质量的高斯噪音对噪音“真值”的准确度带来的负面影响。此外,直接采用拉普拉斯机制进行隐私保护会由于拉普拉斯分布的随机性和无界性导致大量噪音注入。为解决上述问题,该文提出一种基于混合分布的本地差分隐私真值发现算法(MOON)。该算法结合了工人质量的高斯噪音和隐私保护的拉普拉斯噪音,通过优化混合噪音模型,设计求解算法以提高“真值”精度。理论分析表明,MOON在保证隐私保护的同时,具有较低的计算和通信复杂度。在两个真实数据集上实验结果表明,相对于最新成果,在增加较少计算开销的前提下,MOON在求得的“真值”精度上提高了20%。
  • 图  1  本文问题场景

    图  2  MOON流程图

    图  3  ε的影响

    图  4  权重值分布情况

    图  5  运行时间

    表  1  常用符号

    符号 符号定义
    M, N 工人数、任务数
    ws s个工人的质量
    xsn s个工人所做第n个任务的值
    xn n个任务的真值
    U, T 工人集合、任务集合
    xn 噪音真值
    xsn 噪音值
    Un 做了第n个任务的工人集合
    τ 迭代阈值
    下载: 导出CSV

    1  MOON算法

     输入:工人的感知值xsn;迭代阈值τ
     输出:工人的质量(权重)ws;任务噪音真值xn
     /*本地端*/
     1. for s=1,2,,M do;
     2. for n=1,2,,Ndo;
     3.  调用Laplace机制对感知值进行加噪;
     4.  工人将加噪后的感知值xsn上传给服务器;
     5. end for
     6. end for
     /*服务器端*/
     7.初始化ws,xn
     8. repeat
     9.  根据式(18)更新工人质量ws
     10. 根据式(24)更新加噪真值xn
     11. until 达到迭代次数或者满足迭代阈值τ
     12. return ws, xn
    下载: 导出CSV
  • [1] 吕翊, 王燕, 崔亚平, 等. 考虑工人培养的移动群智感知任务分配机制[J]. 电子与信息学报, 2023, 45(4): 1505–1513. doi: 10.11999/JEIT220249.

    LÜ Yi, WANG Yan, CUI Yaping, et al. Worker development-aware task allocation strategy in mobile crowd sensing[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1505–1513. doi: 10.11999/JEIT220249.
    [2] LIU Yutong, KONG Linghe, and CHEN Guihai. Data-oriented mobile crowdsensing: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2849–2885. doi: 10.1109/COMST.2019.2910855.
    [3] 蒋伟进, 陈萍萍, 张婉清, 等. 基于组合多臂赌博机的移动群智感知用户招募算法[J]. 电子与信息学报, 2022, 44(3): 1119–1128. doi: 10.11999/JEIT210119.

    JIANG Weijin, CHEN Pingping, ZHANG Wanqing, et al. Mobile crowdsensing user recruitment algorithm based on combination multi-armed bandit[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1119–1128. doi: 10.11999/JEIT210119.
    [4] ZHANG Daqing, WANG Leye, XIONG Haoyi, et al. 4W1H in mobile crowd sensing[J]. IEEE Communications Magazine, 2014, 52(8): 42–48. doi: 10.1109/MCOM.2014.6871668.
    [5] 熊金波, 毕仁万, 田有亮, 等. 移动群智感知安全与隐私: 模型、进展与趋势[J]. 计算机学报, 2021, 44(9): 1949–1966. doi: 10.11897/SP.J.1016.2021.01949.

    XIONG Jinbo, BI Renwan, TIAN Youliang, et al. Security and privacy in mobile crowdsensing: Model, progresses, and trends[J]. Chinese Journal of Computers, 2021, 44(9): 1949–1966. doi: 10.11897/SP.J.1016.2021.01949.
    [6] MA Huadong, ZHAO Dong, and YUAN Peiyan. Opportunities in mobile crowd sensing[J]. IEEE Communications Magazine, 2014, 52(8): 29–35. doi: 10.1109/MCOM.2014.6871666.
    [7] FANG Xiu, SHEN Chenling, SHENG Q Z, et al. A multi-truth discovery approach based on confidence interval estimation of truths[C]. Proceedings of the 19th International Conference on Advanced Data Mining and Applications, Shenyang, China, 2023: 599–615. doi: 10.1007/978-3-031-46677-9_41.
    [8] XIAO Houping and WANG Shiyu. A joint maximum likelihood estimation framework for truth discovery: A Unified Perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 5521–5533. doi: 10.1109/TKDE.2022.3173911.
    [9] MO Wen, LI Zeyuan, ZENG Zhiwen, et al. SCTD: A spatiotemporal correlation truth discovery scheme for security management of data platform[J]. Future Generation Computer Systems, 2023, 139: 109–125. doi: 10.1016/j.future.2022.09.022.
    [10] LIANG Tingxuan, CHEN Lingyi, HUANG Mingfeng, et al. RLTD: A reinforcement learning-based truth data discovery scheme for decision support systems under sustainable environments[J]. Applied Soft Computing, 2023, 143: 110369. doi: 10.1016/j.asoc.2023.110369.
    [11] XIAN Youquan, LIU Peng, LI Dongcheng, et al. Safeguarding the truth of high-value price oracle task: A dynamically adjusted truth discovery method[J]. arXiv: 2402.02543, 2024. (查阅网上资料, 请核对文献类型及格式) .
    [12] WANG Han, LIU Anfeng, XIONG N N, et al. TVD-RA: A truthful data value discovery-based reverse auction incentive system for mobile crowdsensing[J]. IEEE Internet of Things Journal, 2024, 11(4): 5826–5839. doi: 10.1109/JIOT.2023.3308072.
    [13] KANG Yunchuan, LIU Anfeng, XIONG N N, et al. DTD: An intelligent data and bid dual truth discovery scheme for MCS in IIoT[J]. IEEE Internet of Things Journal, 2024, 11(2): 2507–2519. doi: 10.1109/JIOT.2023.3292920.
    [14] LI Qi, LI Yaliang, GAO Jing, et al. Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation[C]. Proceedings of 2014 ACM SIGMOD International Conference on Management of Data, Snowbird Utah, USA, 2014: 1187–1198. doi: 10.1145/2588555.2610509.
    [15] ERLINGSSON Ú, PIHUR V, and KOROLOVA A. RAPPOR: Randomized aggregatable privacy-preserving ordinal response[C]. Proceedings of 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale Arizona, USA, 2014: 1054–1067. doi: 10.1145/2660267.2660348.
    [16] TANG Jun, KOROLOVA A, BAI Xiaolong, et al. Privacy loss in apple’s implementation of differential privacy on MaCOS 10.12[J]. arXiv: 1709.02753, 2017. (查阅网上资料, 请核对文献类型及格式) .
    [17] DING Bolin, KULKARNI J, and YEKHANIN S. Collecting telemetry data privately[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 3574–3583.
    [18] HUSAIN H, BALLE B, CRANKO Z, et al. Local differential privacy for sampling[C]. Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, Palermo, Sicily, Italy, 2020: 3404–3413.
    [19] LIU Yuxian, LIU Fagui, WU Haotian, et al. RPTD: Reliability-enhanced privacy-preserving truth discovery for mobile crowdsensing[J]. Journal of Network and Computer Applications, 2022, 207: 103484. doi: 10.1016/j.jnca.2022.103484.
    [20] TANG Jianchao, FU Shaojing, LIU Ximeng, et al. Achieving privacy-preserving and lightweight truth discovery in mobile crowdsensing (Extended abstract)[C]. Proceedings of the IEEE 39th International Conference on Data Engineering, Anaheim, USA, 2023: 3797–3798. doi: 10.1109/ICDE55515.2023.00325.
    [21] CHENG Yudan, MA Jianfeng, LIU Zhiquan, et al. A privacy-preserving and reputation-based truth discovery framework in mobile crowdsensing[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(6): 5293–5311. doi: 10.1109/TDSC.2023.3276976.
    [22] LIU Xingting, ZHOU Siwang, ZHANG Wei, et al. Privacy-preserving truth discovery for collaborative-cloud encryption in mobile crowdsensing[J]. IEEE Systems Journal, 2023, 17(3): 4990–5001. doi: 10.1109/JSYST.2023.3274812.
    [23] XIONG Ping, LI Guirong, LIU Hengzhu, et al. Decentralized privacy-preserving truth discovery for crowd sensing[J]. Information Sciences, 2023, 632: 730–741. doi: 10.1016/j.ins.2023.03.046.
    [24] WANG Leye, FAN Guanghong, and HAN Xiao. Federated truth discovery for mobile crowdsensing with privacy-preserving trustworthiness assessment[J]. IEEE Data Engineering Bulletin, 2023, 46(1): 124–144.
    [25] LIU Rui and PAN Jianping. Lightweight privacy-preserving truth discovery for vehicular air quality monitoring[J]. Digital Communications and Networks, 2023, 9(1): 280–291. doi: 10.1016/j.dcan.2022.03.021.
    [26] AGATE V, FERRARO P, RE G L, et al. BLIND: A privacy preserving truth discovery system for mobile crowdsensing[J]. Journal of Network and Computer Applications, 2024, 223: 103811. doi: 10.1016/j.jnca.2023.103811.
    [27] SUN Peng, WANG Zhibo, FENG Yunhe, et al. Towards personalized privacy-preserving incentive for truth discovery in crowdsourced binary-choice question answering[C]. Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, Canada, 2020: 1133–1142. doi: 10.1109/INFOCOM41043.2020.9155429.
    [28] LI Yaliang, MIAO Chenglin, SU Lu, et al. An efficient two-layer mechanism for privacy-preserving truth discovery[C]. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 1705–1714. doi: 10.1145/3219819.3219998.
    [29] WANG Di and XU Jinhui. Inferring ground truth from crowdsourced data under local attribute differential privacy[J]. Theoretical Computer Science, 2021, 865: 85–98. doi: 10.1016/j.tcs.2021.02.039.
    [30] SUN Haipei, DONG Boxiang, WANG Hui, et al. Truth inference on sparse crowdsourcing data with local differential privacy[C]. Proceedings of 2018 IEEE International Conference on Big Data, Seattle, USA, 2018: 488–497. doi: 10.1109/BigData.2018.8622635.
    [31] LI Yaliang, XIAO Houping, QIN Zhan, et al. Towards differentially private truth discovery for crowd sensing systems[C]. Proceedings of the 40th International Conference on Distributed Computing Systems, Singapore, Singapore, 2020: 1156–1166. doi: 10.1109/ICDCS47774.2020.00037.
    [32] SUN Peng, WANG Zhibo, WU Liantao, et al. Towards personalized privacy-preserving incentive for truth discovery in mobile crowdsensing systems[J]. IEEE Transactions on Mobile Computing, 2022, 21(1): 352–365. doi: 10.1109/TMC.2020.3003673.
    [33] XU Guowen, LI Hongwei, XU Shengmin, et al. Catch you if you deceive me: Verifiable and privacy-aware truth discovery in crowdsensing systems[C]. Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, Taipei, China, 2020: 178–192. doi: 10.1145/3320269.3384720.
    [34] ZHANG Pengfei, CHENG Xiang, SU Sen, et al. PrivTDSI: A local differentially private approach for truth discovery via sampling and inference[J]. IEEE Transactions on Big Data, 2023, 9(2): 471–484. doi: 10.1109/TBDATA.2022.3186175.
    [35] ZHANG Pengfei, CHENG Xiang, SU Sen, et al. Effective truth discovery under local differential privacy by leveraging noise-aware probabilistic estimation and fusion[J]. Knowledge-Based Systems, 2023, 261: 110213. doi: 10.1016/j.knosys.2022.110213.
    [36] BUCKLEY C, LEASE M, SMUCKER M D, et al. Overview of the TREC 2010 relevance feedback track (notebook)[C]. Proceedings of the 19th Text Retrieval Conference (TREC) Notebook, 2010. .
    [37] XU Guowen, LI Hongwei, LIU Sen, et al. Efficient and privacy-preserving truth discovery in mobile crowd sensing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3854–3865. doi: 10.1109/TVT.2019.2895834.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  46
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-25
  • 修回日期:  2025-02-27
  • 网络出版日期:  2025-03-14

目录

    /

    返回文章
    返回