高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子空间稀疏分解驱动的RIS辅助毫米波MIMO系统密钥生成机制

杨立君 孔文杰 陆海涛 亓晋

杨立君, 孔文杰, 陆海涛, 亓晋. 原子空间稀疏分解驱动的RIS辅助毫米波MIMO系统密钥生成机制[J]. 电子与信息学报, 2025, 47(4): 1066-1075. doi: 10.11999/JEIT240885
引用本文: 杨立君, 孔文杰, 陆海涛, 亓晋. 原子空间稀疏分解驱动的RIS辅助毫米波MIMO系统密钥生成机制[J]. 电子与信息学报, 2025, 47(4): 1066-1075. doi: 10.11999/JEIT240885
YANG Lijun, KONG Wenjie, LU Haitao, QI Jin. A Key Generation Method Based on Atomic Norm Minimization For Reconfigurable Intelligent Surface-Assisted Millimeter Wave MIMO Communication Systems[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1066-1075. doi: 10.11999/JEIT240885
Citation: YANG Lijun, KONG Wenjie, LU Haitao, QI Jin. A Key Generation Method Based on Atomic Norm Minimization For Reconfigurable Intelligent Surface-Assisted Millimeter Wave MIMO Communication Systems[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1066-1075. doi: 10.11999/JEIT240885

原子空间稀疏分解驱动的RIS辅助毫米波MIMO系统密钥生成机制

doi: 10.11999/JEIT240885
基金项目: 国家自然科学基金( 62372244, 62172235),中兴通讯产学研(2023ZTE08-02),国家重点研发计划(2021YFB3101100),江苏省重点研发计划重点项目(BE2023025),南京邮电大学校级自然科学基金(NY222132),江苏省研究生科研与实践创新计划项目(KYCX23_1056)
详细信息
    作者简介:

    杨立君:女,副教授,研究方向为无线网络与信息安全

    孔文杰:女,硕士生,研究方向为物理层密钥生成

    陆海涛:男,高级工程师,研究方向为5G/B5G/6G通信安全技术

    亓晋:男,教授,研究方向为数据智能与安全

    通讯作者:

    亓晋 qijin@njupt.edu.cn

  • 中图分类号: TN92

A Key Generation Method Based on Atomic Norm Minimization For Reconfigurable Intelligent Surface-Assisted Millimeter Wave MIMO Communication Systems

Funds: The National Natural Science Foundation of China (62372244, 62172235), The ZTE Industry-university-Research Fund (2023ZTE08-02), The National Key Research and Development Program of China (2021YFB3101100), The Primary Research & Developement Plan of Jiangsu Province (BE2023025), The Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY222132), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_1056)
  • 摘要: 针对毫米波大规模多输入多输出(MIMO)系统中智能超表面(RIS)辅助的密钥生成方法面临的导频开销高、信道信息估计误差大和信道稀疏度依赖性强等问题,该文提出一种基于原子范数最小化(ANM)的RIS辅助密钥生成方案。现有基于压缩感知(CS)的密钥生成方案需预设信道稀疏度作为先验知识,且受限于网格化离散建模,易导致密钥失配问题。该方案通过引入ANM技术,将基站(Base Station, BS)与用户(UE)间的级联信道估计问题转化为无限分辨率的稀疏信号恢复问题,结合多信号分类(MUSIC)算法联合估计虚拟离开角(AoDs)与到达角(AoAs),突破传统网格化约束并消除对稀疏度的显式假设,从而提取高精度信道参数作为密钥源。仿真结果表明,与基于传统CS的方案相比,该方案在5 dB的信噪比条件下密钥不一致率降低了47.7%,同时显著减少了导频开销;随着天线规模扩大,其性能优势进一步凸显。该方案为RIS辅助毫米波MIMO系统的密钥生成提供了一种无需先验稀疏度、抗网格误差的可靠解决思路。
  • 图  1  系统模型图

    图  2  波束域信道,$ {N_{\text{r}}} = {N_{\text{t}}} = 64 $

    图  3  NMSE随导频长度变化情况

    图  4  比特不一致率随SNR变化情况

    图  5  不同天线数目和路径数对BDR的影响

    图  6  每比特互信息随SNR变化情况

    图  7  密钥生成速率随SNR变化情况

  • [1] 张泳翔. 基于无线信道特征的物理层密钥技术研究[D]. [硕士论文], 江苏科技大学, 2022. doi: 10.27171/d.cnki.ghdcc.2022.000592.

    ZHANG Yongxiang. Research on physical layer key technology based on wireless channel characteristics[D]. [Master dissertation], Jiangsu University of Science and Technology, 2022. doi: 10.27171/d.cnki.ghdcc.2022.000592.
    [2] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [3] KAUR R, BANSAL B, MAJHI S, et al. A survey on reconfigurable intelligent surface for physical layer security of next-generation wireless communications[J]. IEEE Open Journal of Vehicular Technology, 2024, 5: 172–199. doi: 10.1109/OJVT.2023.3348658.
    [4] SHLEZINGER N, ALEXANDROPOULOS G C, IMANI M F, et al. Dynamic metasurface antennas for 6G extreme massive MIMO communications[J]. IEEE Wireless Communications, 2021, 28(2): 106–113. doi: 10.1109/MWC.001.2000267.
    [5] 郝一诺, 金梁, 黄开枝, 等. 准静态场景下基于智能超表面的密钥生成方法[J]. 网络与信息安全学报, 2021, 7(2): 77–85. doi: 10.11959/j.issn.2096-109x.2021027.

    HAO Yinuo, JIN Liang, HUANG Kaizhi, et al. Key generation method based on reconfigurable intelligent surface in quasi-static scene[J]. Chinese Journal of Network and Information Security, 2021, 7(2): 77–85. doi: 10.11959/j.issn.2096-109x.2021027.
    [6] CHEN Zhen, GUO Yeyong, ZHANG Peichang, et al. Physical Layer Security Improvement for Hybrid RIS-Assisted MIMO Communications[J]. IEEE Communications Letters, 2024, 28(11): 2493–2497. doi: 10.1109/LCOMM.2024.3427010.
    [7] HU Xiaoyan, JIN Liang, HUANG Kaizhi, et al. Intelligent reflecting surface-assisted secret key generation with discrete phase shifts in static environment[J]. IEEE Wireless Communications Letters, 2021, 10(9): 1867–1870. doi: 10.1109/LWC.2021.3084347.
    [8] JI Zijie, YEOH P L, CHEN Gaojie, et al. Random shifting intelligent reflecting surface for OTP encrypted data transmission[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1192–1196. doi: 10.1109/LWC.2021.3061549.
    [9] 唐杰, 文红, 宋欢欢, 等. 基于智能反射表面辅助的MIMO无线通信密钥快速生成[J]. 电子与信息学报, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.

    TANG Jie, WEN Hong, SONG Huanhuan, et al. MIMO fast wireless secret key generation based on intelligent reflecting surface[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.
    [10] SUN Shu, MACCARTNEY G R, and RAPPAPORT T S. A novel millimeter-wave channel simulator and applications for 5G wireless communications[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–7. doi: 10.1109/ICC.2017.7996792.
    [11] JIAO Long, TANG Jie, and ZENG Kai. Physical layer key generation using virtual AoA and AoD of mmWave massive MIMO channel[C]. 2018 IEEE Conference on Communications and Network Security (CNS), Beijing, China, 2018: 1–9. doi: 10.1109/CNS.2018.8433175.
    [12] LU Tianyu, CHEN Liquan, ZHANG Junqing, et al. Duong. Reconfigurable intelligent surface-assisted key generation for millimeter wave communications[C]. 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10119128.
    [13] LI Hongyuan, CHEN Liquan, LU Tianyu, et al. Angular-domain secret key generation for RIS-aided mmWave MIMO systems[C]. 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, China, 2023: 1–6. doi: 10.1109/VTC2023-Fall60731.2023.10333834.
    [14] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
    [15] JU Ying, ZOU Guoxue, BAI Haowen, et al. Random beam switching: A physical layer key generation approach to safeguard mmWave electronic devices[J]. IEEE Transactions on Consumer Electronics, 2023, 69(3): 594–607. doi: 10.1109/TCE.2023.3273125.
    [16] ALKHATEEB A, LEUS G, and HEATH R W. Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 2015: 2909–2913. doi: 10.1109/ICASSP.2015.7178503.
    [17] ZHANG Zhe, WANG Yue, and TIAN Zhi. Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization[J]. Signal Processing, 2019, 163: 95–106. doi: 10.1016/j.sigpro.2019.04.024.
    [18] 朱荣. 基于IRS辅助的无线通信物理层密钥生成的研究[D]. [硕士论文], 东华大学, 2024. doi: 10.27012/d.cnki.gdhuu.2024.001141.

    ZHU Rong. Research on IRS-assisted physical Layer key generation for wireless communication[D]. [Master dissertation], Donghua University, 2024. doi: 10.27012/d.cnki.gdhuu.2024.001141.
    [19] WANG Yue, TIAN Zhi, FENG Shulan, et al. A fast channel estimation approach for millimeter-wave massive MIMO systems[C]. 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, USA, 2016: 1413–1417. doi: 10.1109/GlobalSIP.2016.7906074.
    [20] RAPPAPORT T S, SUN Shu, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular: It will work![J]. IEEE Access, 2013, 1: 335–349. doi: 10.1109/ACCESS.2013.2260813.
  • 加载中
图(7)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  60
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-21
  • 修回日期:  2025-04-02
  • 网络出版日期:  2025-04-08
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回