高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图网络的遥感地物关系表达与推理的地表异常检测

刘思琪 高智 陈泊安 路遥 朱军 李衍璋 王桥

刘思琪, 高智, 陈泊安, 路遥, 朱军, 李衍璋, 王桥. 基于图网络的遥感地物关系表达与推理的地表异常检测[J]. 电子与信息学报, 2025, 47(6): 1690-1703. doi: 10.11999/JEIT240883
引用本文: 刘思琪, 高智, 陈泊安, 路遥, 朱军, 李衍璋, 王桥. 基于图网络的遥感地物关系表达与推理的地表异常检测[J]. 电子与信息学报, 2025, 47(6): 1690-1703. doi: 10.11999/JEIT240883
LIU Siqi, GAO Zhi, CHEN Boan, LU Yao, ZHU Jun, LI Yanzhang, WANG Qiao. Earth Surface Anomaly Detection Using Graph Neural Network-based Representation and Reasoning of Remote Sensing Geographic Object Relationships[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1690-1703. doi: 10.11999/JEIT240883
Citation: LIU Siqi, GAO Zhi, CHEN Boan, LU Yao, ZHU Jun, LI Yanzhang, WANG Qiao. Earth Surface Anomaly Detection Using Graph Neural Network-based Representation and Reasoning of Remote Sensing Geographic Object Relationships[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1690-1703. doi: 10.11999/JEIT240883

基于图网络的遥感地物关系表达与推理的地表异常检测

doi: 10.11999/JEIT240883 cstr: 32379.14.JEIT240883
基金项目: 民用航天项目(D010206)
详细信息
    作者简介:

    刘思琪:女,硕士生,研究方向为遥感影像解译、计算机视觉

    高智:男,教授,研究方向为计算机视觉、机器学习、遥感

    陈泊安:男,博士生,研究方向为遥感图像理解、图神经网络

    路遥:男,副研究员,研究方向为遥感图像理解

    朱军:男,研究员,研究方向为遥感影像解译

    李衍璋:男,工程师,研究方向为遥感影像解译

    王桥:男,教授,中国工程院院士,研究方向为环境遥感与地理信息系统

    通讯作者:

    高智 gaozhinus@gmail.com

  • 中图分类号: TN911.73; TP751

Earth Surface Anomaly Detection Using Graph Neural Network-based Representation and Reasoning of Remote Sensing Geographic Object Relationships

Funds: Civil Aerospace Project (D010206)
  • 摘要: 遥感地物间的语义关系可以表征地物间的相互影响与结构信息,对地表的灾害检测与应急响应具有重要意义。然而,现有的遥感地物关系提取方法多依赖于目标检测,定位精度有限,且关系预测网络主要局限于注意力机制、卷积网络,难以有效建模复杂拓扑关系。此外,公开规范的遥感地物关系数据集的缺乏也进一步制约了该领域的发展。为了解决上述问题,该文建立了遥感地物语义关系数据集,并采用了一种基于图神经网络的关系预测模型,准确提取遥感场景中蕴含的地物关系。具体而言,首先针对地物实例定义了遥感地物关系描述体系,结合地物类别和拓扑信息标注地物间的语义关系,构建了遥感地物语义关系数据集。其次,引入先进的图神经网络模型进行关系预测,通过子图采样和超参数优化,有效提升了模型在遥感场景下的性能。通过上述方法,该文建立了一个小型的遥感地物语义关系数据集,探索了图神经网络在遥感地表异常场景中地物关系提取的应用。在遥感地物关系描述数据集上进行的实验结果表明,模型不仅在验证集的评估指标中表现出较强的竞争力,还在灾害异常场景中的实验中检测到灾害前后地物关系的显著变化,加强了对灾害场景地表异常的理解能力。
  • 图  1  构建遥感地物语义关系数据集的技术路线

    图  2  遥感地物语义关系数据集语义分割的样本示例

    图  3  针对遥感地物语义关系数据集的统计分析图

    图  4  逐层和逐子图采样示意图

    图  5  单子图模型采样示意图

    图  6  飓风灾害前遥感影像及其地物关系图

    图  7  飓风灾害后遥感影像及其地物关系图

    图  8  佛罗伦萨飓风灾害前地物组合的频率直方图

    图  9  佛罗伦萨飓风灾害后地物组合的频率直方图

    图  10  山火灾害前遥感影像及其地物关系图

    图  11  山火灾害后遥感影像及其地物关系

    图  12  加利福尼亚山火灾害前地物组合的频率直方图

    图  13  加利福尼亚山火灾害后地物组合的频率直方图

    表  1  地物类别的定义

    类别索引类别名称类别颜色类别描述
    1Tree[34, 97, 38]树木,有明显的高度信息
    2Rangeland[0, 255, 36]草地,纹理较为平滑
    3Bareland[128, 0, 0]裸土,一般是水边的未开发区域
    4AgricType[75, 181, 73]耕地,植物多、纹理较多
    5Road[255, 255, 255]道路,车辆行驶的主干道
    6Sea Lake Pond[0, 69, 255]海水、湖水、池塘
    7Residential Area[222, 31, 7]居民区建筑
    8Bridge[139, 69, 19]桥梁、立交桥
    9River[255, 215, 0]河流
    10Ship[255, 128, 128]船只
    11Fallow[128, 128, 128]休耕地,暂时停耕的土地
    12Industrial Area[255, 160, 222]工业区建筑,一般面积较大
    13Car[198, 226, 255]车辆
    14SportsField[225, 228,196]体育场
    15CarPark[0, 139,139]停车场,可用于停车的空地
    16SandyLand[230, 230,250]沙地,居民区附近的泥土地等
    17Path[0,255,255]小路,一般仅供人行走
    下载: 导出CSV

    表  2  地物间语义关系词的定义

    关系名称 关系示例图 关系描述
    contain 实例A的边界完全包含在实例B中
    (包含、被包含都统一用此关系描述)
    connect 实例A与实例B几乎以0像素相连
    on 实例A在实例B上,反映层次性关系
    along 条状实例A沿着块状实例B
    beside 实例A在实例B附近,但没有相连
    下载: 导出CSV

    表  3  最优超参数组合取值

    超参数名称学习率注意力层维度网络层数激活函数神经元随机失活率读出函数衰减率
    超参数取值0.001644ReLU0.129Linear0.944
    下载: 导出CSV

    表  4  模型在知识图谱数据集以及本文数据集上的指标对比

    数据集名称验证集MRR指标HITS@1HITS@10
    WN18RR0.589 050.9161.25
    NELL0.535 147.6560.23
    YAGO0.621 753.6670.08
    遥感地物语义关系数据集0.987 997.0399.96
    下载: 导出CSV

    表  5  不同模型在本文数据集上的指标对比

    模型名称验证集MRR指标HITS@1HITS@10推理时间(s)
    RED-GNN(逐层)0.536 452.4854.87100.82
    Grail(逐子图)0.964 292.8497.8356.94
    Ours(单子图)0.987 997.0399.9620.62
    下载: 导出CSV

    表  6  不同采样方法在本文数据集上的指标对比

    采样方法验证集MRR指标HITS@1HITS@10推理时间(s)
    RW0.845 683.7285.198.72
    BFS0.978 896.6698.8225.73
    PR0.979296.8598.9331.65
    PPR(本文)0.987 997.0399.9620.62
    下载: 导出CSV
  • [1] XU Jianming, YAN Kai, FAN Zaiwang, et al. Toward a novel method for general on-orbit earth surface anomaly detection leveraging large vision models and lightweight priors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4706321. doi: 10.1109/TGRS.2024.3432749.
    [2] 王桥. 地表异常遥感探测与即时诊断方法研究框架[J]. 测绘学报, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.

    WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.
    [3] JOHNSON J, KRISHNA R, STARK M, et al. Image retrieval using scene graphs[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3668–3678. doi: 10.1109/CVPR.2015.7298990.
    [4] LU Xiaoqiang, WANG Binqiang, ZHENG Xiangtao, et al. Exploring models and data for remote sensing image caption generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2183–2195. doi: 10.1109/TGRS.2017.2776321.
    [5] QU Bo, LI Xuelong, TAO Dacheng, et al. Deep semantic understanding of high resolution remote sensing image[C]. 2016 International Conference on Computer, Information and Telecommunication Systems, Kunming, China, 2016: 1–5. doi: 10.1109/CITS.2016.7546397.
    [6] CHANG Xiaojun, REN Pengzhen, XU Pengfei, et al. A comprehensive survey of scene graphs: Generation and application[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 1–26. doi: 10.1109/TPAMI.2021.3137605.
    [7] CAI Qi, PAN Yingwei, NGO C W, et al. Exploring object relation in mean teacher for cross-domain detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11449–11458. doi: 10.1109/CVPR.2019.01172.
    [8] CHEN Jie, ZHOU Xing, ZHANG Yi, et al. Message-passing-driven triplet representation for geo-object relational inference in HRSI[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8003205. doi: 10.1109/LGRS.2020.3038569.
    [9] LIN Zhiyuan, ZHU Feng, KONG Yanzi, et al. SRSG and S2SG: A model and a dataset for scene graph generation of remote sensing images from segmentation results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4707411. doi: 10.1109/TGRS.2022.3185678.
    [10] LI Yansheng, WANG Linlin, WANG Tingzhu, et al. STAR: A first-ever dataset and a large-scale benchmark for scene graph generation in large-size satellite imagery[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(3): 1832–1849. doi: 10.1109/TPAMI.2024.3508072.
    [11] 陈杰, 戴欣宜, 周兴, 等. 双LSTM驱动的高分遥感影像地物目标空间关系语义描述[J]. 遥感学报, 2021, 25(5): 1085–1094. doi: 10.11834/jrs.20210340.

    CHEN Jie, DAI Xinyi, ZHOU Xing, et al. Semantic understanding of geo-objects’ relationship in high resolution remote sensing image driven by dual LSTM[J]. National Remote Sensing Bulletin, 2021, 25(5): 1085–1094. doi: 10.11834/jrs.20210340.
    [12] 伍丝琪. 基于目标空间关系和多源地理数据的高分辨率遥感城市场景语义分类方法研究[D]. [硕士论文], 武汉大学, 2019.

    WU Siqi. Research on high spatial resolution remote sensing urban scene classification using spatial relationship of objects and multi-source geographic data[D]. [Master dissertation], Wuhan University, 2019.
    [13] 周兴, 孙庚, 戴欣怡, 等. 基于语句模板的遥感影像地物空间关系语义理解[J]. 测绘工程, 2021, 30(6): 27–33,39. doi: 10.19349/j.cnki.issn1006-7949.2021.06.005.

    ZHOU Xing, SUN Geng, DAI Xinyi, et al. Template-based spatial relationship semantic understanding of remote sensing images[J]. Engineering of Surveying and Mapping, 2021, 30(6): 27–33,39. doi: 10.19349/j.cnki.issn1006-7949.2021.06.005.
    [14] XIA Junshi, YOKOYA N, ADRIANO B, et al. OpenEarthMap: A benchmark dataset for global high-resolution land cover mapping[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 6243–6253. doi: 10.1109/WACV56688.2023.00619.
    [15] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 1811–1818. doi: 10.1609/aaai.v32i1.11573.
    [16] ZHOU Zhanke, ZHANG Yongqi, YAO Jiangchao, et al. Less is more: One-shot subgraph reasoning on large-scale knowledge graphs[C]. The 12th International Conference on Learning Representations, Vienna, Austria, 2024.
    [17] ZHANG Yongqi and YAO Quanming. Knowledge graph reasoning with relational digraph[C]. The ACM Web Conference 2022, Lyon, France, 2022: 912–924. doi: 10.1145/3485447.3512008.
    [18] TERU K K, DENIS E G, and HAMILTON W L. Inductive relation prediction by subgraph reasoning[C]. The 37th International Conference on Machine Learning, 2020: 876.
    [19] XIONG Wenhan, HOANG T, and WANG W Y. DeepPath: A reinforcement learning method for knowledge graph reasoning[C]. The 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017. doi: 10.18653/v1/D17-1060.
    [20] SUCHANEK F M, KASNECI G, and WEIKUM G. Yago: A core of semantic knowledge[C]. The 16th International Conference on World Wide Web, Banff, Canada, 2007: 697–706. doi: 10.1145/1242572.1242667.
    [21] GUPTA R, GOODMAN B, PATEL N, et al. Creating xBD: A dataset for assessing building damage from satellite imagery[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 10–17. doi: 10.1184/R1/8135576.v1.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  134
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-21
  • 修回日期:  2025-05-08
  • 网络出版日期:  2025-05-28
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回