高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合遥感指数协同推理的地表异常检测方法

王立波 高智 王桥

王立波, 高智, 王桥. 融合遥感指数协同推理的地表异常检测方法[J]. 电子与信息学报, 2025, 47(6): 1669-1678. doi: 10.11999/JEIT240882
引用本文: 王立波, 高智, 王桥. 融合遥感指数协同推理的地表异常检测方法[J]. 电子与信息学报, 2025, 47(6): 1669-1678. doi: 10.11999/JEIT240882
WANG Libo, GAO Zhi, WANG Qiao. A Novel Earth Surface Anomaly Detection Method Based on Collaborative Reasoning of Deep Learning and Remote Sensing Indexes[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1669-1678. doi: 10.11999/JEIT240882
Citation: WANG Libo, GAO Zhi, WANG Qiao. A Novel Earth Surface Anomaly Detection Method Based on Collaborative Reasoning of Deep Learning and Remote Sensing Indexes[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1669-1678. doi: 10.11999/JEIT240882

融合遥感指数协同推理的地表异常检测方法

doi: 10.11999/JEIT240882 cstr: 32379.14.JEIT240882
基金项目: 国家自然科学基金(42192580, 42192583),江苏省自然科学基金(BK20240698)
详细信息
    作者简介:

    王立波:男,助理教授,研究方向为遥感图像智能解译、地表异常检测

    高智:男,教授,博士生导师,研究方向为机器学习、计算机视觉、遥感图像智能处理

    王桥:男,教授,中国工程院院士,研究方向为环境遥感与地理信息系统

    通讯作者:

    高智 gaozhinus@gmail.com

  • 中图分类号: TN911.73; TP75; P237

A Novel Earth Surface Anomaly Detection Method Based on Collaborative Reasoning of Deep Learning and Remote Sensing Indexes

Funds: The National Natural Science Foundation of China (42192580, 42192583), The Natural Science Foundation of Jiangsu Province (BK20240698)
  • 摘要: 地表异常检测是遥感图像处理领域颇具挑战的前沿问题。一方面,地表异常样本搜集困难,可训练样本稀缺。另一方面,地表异常场景类内差异大,类间相似性高,分类混淆问题突出。因此,该文提出一种融合遥感指数协同推理的地表异常检测方法(DeepIndex)。DeepIndex在大规模预训练视觉语言模型基础上,设计轻量级自适应微调模块,实现少样本高效学习。同时,DeepIndex引入具有物理机理的遥感指数先验辅助模型推理,改善分类混淆问题。为了验证方法有效性,该文构建了一个多光谱地表异常检测数据集(MS-ESAD),包含2 768张多光谱遥感图像,红、绿、蓝、红外等6个波段以及野火、绿潮、蓝藻3种地表异常类型。DeepIndex在MS-ESAD和NWPU45数据集上均表现优异,在少量样本训练(20%)条件下,分别取得92.36%和94.39%的分类精度。同时,消融实验表明,融合遥感指数协同推理能够显著改善模型分类混淆问题。
  • 图  1  DeepIndex网络结构

    图  2  融合遥感指数协同推理框架

    图  3  多光谱遥感地表异常样本展示

    图  4  DeepIndex与其他方法在MS-ESAD数据集上的对比实验结果图

    图  5  DeepIndex与其他方法在NWPU数据集上的对比实验结果图

    表  1  MS-ESAD数据集概览

    属性 描述
    波段 蓝、绿、红、近红外、短波红外1、短波红外2
    波段号 B02, B03, B04, B08, B11, B12
    合成图像 RGB可见光图像、SWIR红外图像
    图像分辨率 10 m
    图像大小 512×512添加单位
    地表异常类型 野火、绿潮、蓝藻
    样本数量 野火:1 110,绿潮:1 048,蓝藻:610
    下载: 导出CSV

    表  2  DeepIndex零样本推理消融实验结果(%)

    方法MS-ESAD训练野火绿潮蓝藻AA
    DeepIndex0.00.026.118.70
    DeepIndex+遥感指数1.756.5547.3118.54
    下载: 导出CSV

    表  3  DeepIndex在混淆样本上的消融实验结果(%)

    方法MS-ESAD训练野火绿潮蓝藻AA
    DeepIndex52.6372.9125.9250.49
    DeepIndex+遥感指数60.0072.9240.7457.88
    下载: 导出CSV

    表  4  DeepIndex与其他方法在MS-ESAD数据集上的对比实验结果(%)

    方法野火绿潮蓝藻AA
    ResNet[29]95.7179.8591.3788.98
    EfficientNet[30]64.1798.1297.2086.50
    ViT[27]94.7296.4884.6191.94
    EMTCAL[31]78.3599.0694.6390.68
    MBLANet[32]82.1698.0292.3490.84
    CGINet[33]84.2898.5391.5191.44
    EMSCNet[34]83.6598.6491.1991.16
    DeepIndex94.8395.3186.9492.36
    下载: 导出CSV

    表  5  DeepIndex与其他方法在NWPU45数据集上的对比实验结果(%)

    方法 OA
    10%样本训练 20%样本训练
    ResNet[29] 90.19 93.25
    EfficientNet[30] 90.06 93.12
    ViT[27] 90.95 93.48
    EMTCAL[31] 91.63 93.65
    MBLANet[32] 91.93 94.33
    CGINet[33] 92.28 94.38
    EMSCNet[34] 92.16 94.08
    DeepIndex 92.33 94.39
    下载: 导出CSV
  • [1] 王桥. 地表异常遥感探测与即时诊断方法研究框架[J]. 测绘学报, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.

    WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.
    [2] WEI Haishuo, JIA Kun, WANG Qiao, et al. Real-time remote sensing detection framework of the earth’s surface anomalies based on a priori knowledge base[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122: 103429. doi: 10.1016/j.jag.2023.103429.
    [3] REN Shoujia, PAN Yaozhong, ZHU Xiufang, et al. A general and simple automated impervious surface mapping approach based on three-dimensional texture features (3DTF) using fine spatial resolution remotely sensed imagery[J]. Science of the Total Environment, 2024, 923: 171181. doi: 10.1016/j.scitotenv.2024.171181.
    [4] WU Hanyi, ZHAO Chuanwu, ZHU Yu, et al. A multiscale examination of heat health risk inequality and its drivers in mega-urban agglomeration: A case study in the Yangtze River Delta, China[J]. Journal of Cleaner Production, 2024, 458: 142528. doi: 10.1016/j.jclepro.2024.142528.
    [5] ZHAO Chuanwu, PAN Yaozhong, REN Shoujia, et al. Accurate vegetation destruction detection using remote sensing imagery based on the three-band difference vegetation index (TBDVI) and dual-temporal detection method[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 127: 103669. doi: 10.1016/j.jag.2024.103669.
    [6] ZHU Wenquan, YANG Xinyi, LIU Ruoyang, et al. A new feature extraction algorithm for measuring the spatial arrangement of texture Primitives: Distance coding diversity[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 127: 103698. doi: 10.1016/j.jag.2024.103698.
    [7] LIU Ruoyang, ZHU Wenquan, and YANG Xinyi. Screening image features of collapsed buildings for operational and rapid remote sensing identification[J]. Remote Sensing, 2023, 15(24): 5747. doi: 10.3390/rs15245747.
    [8] ROY D P, JIN Yufang, LEWIS P E, et al. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data[J]. Remote Sensing of Environment, 2005, 97(2): 137–162. doi: 10.1016/j.rse.2005.04.007.
    [9] YANG Fan, GUO Jianhua, TAN Hai, et al. Automated extraction of urban water bodies from ZY-3 multi-spectral imagery[J]. Water, 2017, 9(2): 144. doi: 10.3390/w9020144.
    [10] FAN Jiahui, YAO Yunjun, TANG Qingxin, et al. A hybrid index for monitoring burned vegetation by combining image texture features with vegetation indices[J]. Remote Sensing, 2024, 16(9): 1539. doi: 10.3390/rs16091539.
    [11] WEI Haishuo, JIA Kun, WANG Qiao, et al. A remote sensing index for the detection of multi-type water quality anomalies in complex geographical environments[J]. International Journal of Digital Earth, 2024, 17(1): 2313695. doi: 10.1080/17538947.2024.2313695.
    [12] ZHAO Chuanwu, PAN Yaozhong, WU Hanyi, et al. A novel spectral index for vegetation destruction event detection based on multispectral remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11290–11309. doi: 10.1109/JSTARS.2024.3412737.
    [13] LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539.
    [14] JIAO Licheng, HUANG Zhongjian, LIU Xu, et al. Brain-inspired remote sensing interpretation: A comprehensive survey[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2992–3033. doi: 10.1109/JSTARS.2023.3247455.
    [15] ZHU Xiaoxiang, TUIA D, MOU Lichao, et al. Deep learning in remote sensing: A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8–36. doi: 10.1109/MGRS.2017.2762307.
    [16] WANG Libo, LI Rui, ZHANG Ce, et al. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196–214. doi: 10.1016/j.isprsjprs.2022.06.008.
    [17] HONG Danfeng, ZHANG Bing, LI Xuyang, et al. SpectralGPT: Spectral remote sensing foundation model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5227–5244. doi: 10.1109/TPAMI.2024.3362475.
    [18] SU Hongjun, WU Zhaoyue, ZHANG Huihui, et al. Hyperspectral anomaly detection: A survey[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 64–90. doi: 10.1109/MGRS.2021.3105440.
    [19] XU Yichu, ZHANG Lefei, DU Bo, et al. Hyperspectral anomaly detection based on machine learning: An overview[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3351–3364. doi: 10.1109/JSTARS.2022.3167830.
    [20] LI Chenyu, ZHANG Bing, HONG Danfeng, et al. LRR-Net: An interpretable deep unfolding network for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5513412. doi: 10.1109/TGRS.2023.3279834.
    [21] LI Jingtao, WANG Xinyu, ZHAO Hengwei, et al. Anomaly segmentation for high-resolution remote sensing images based on pixel descriptors[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 4426–4434. doi: 10.1609/aaai.v37i4.25563.
    [22] CHEN Boan, GAO Zhi, LI Ziyao, et al. Hierarchical GNN framework for earth’s surface anomaly detection in single satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5627314. doi: 10.1109/TGRS.2024.3408330.
    [23] XU Jianming, YAN Kai, FAN Zaiwang, et al. Toward a novel method for general on-orbit earth surface anomaly detection leveraging large vision models and lightweight priors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4706321. doi: 10.1109/TGRS.2024.3432749.
    [24] GAO Peng, GENG Shijie, ZHANG Renrui, et al. CLIP-Adapter: Better vision-language models with feature adapters[J]. International Journal of Computer Vision, 2024, 132(2): 581–595. doi: 10.1007/s11263-023-01891-x.
    [25] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]. The 38th International Conference on Machine Learning, 2021: 8748–8763.
    [26] SCHUHMANN C, BEAUMONT R, VENCU R, et al. LAION-5B: An open large-scale dataset for training next generation image-text models[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1833.
    [27] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, Austria, 2021.
    [28] ZHANG Hailong, QIU Zhongfeng, DEVRED E, et al. A simple and effective method for monitoring floating green macroalgae blooms: A case study in the Yellow Sea[J]. Optics Express, 2019, 27(4): 4528–4548. doi: 10.1364/OE.27.004528.
    [29] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [30] TAN Mingxing and LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 6105–6114.
    [31] TANG Xu, LI Mingteng, MA Jingjing, et al. EMTCAL: Efficient multiscale transformer and cross-level attention learning for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5626915. doi: 10.1109/TGRS.2022.3194505.
    [32] CHEN Sibao, WEI Qingsong, WANG Wenzhong, et al. Remote sensing scene classification via multi-branch local attention network[J]. IEEE Transactions on Image Processing, 2022, 31: 99–109. doi: 10.1109/TIP.2021.3127851.
    [33] ZHAO Yichen, CHEN Yaxiong, XIONG Shengwu, et al. Co-enhanced global-part integration for remote-sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4702114. doi: 10.1109/TGRS.2024.3367877.
    [34] ZHAO Yibo, LIU Jianjun, YANG Jinlong, et al. EMSCNet: Efficient multisample contrastive network for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5605814. doi: 10.1109/TGRS.2023.3262840.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  133
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-21
  • 修回日期:  2025-04-08
  • 网络出版日期:  2025-04-23
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回