高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于扩展卡尔曼滤波的智能反射面辅助通感一体化系统安全传输方案

梁彦 杨晓宇 李飞

梁彦, 杨晓宇, 李飞. 一种基于扩展卡尔曼滤波的智能反射面辅助通感一体化系统安全传输方案[J]. 电子与信息学报, 2025, 47(4): 1052-1065. doi: 10.11999/JEIT240853
引用本文: 梁彦, 杨晓宇, 李飞. 一种基于扩展卡尔曼滤波的智能反射面辅助通感一体化系统安全传输方案[J]. 电子与信息学报, 2025, 47(4): 1052-1065. doi: 10.11999/JEIT240853
LIANG Yan, YANG Xiaoyu, LI Fei. An Extended Kalman Filtering Based Secure Transmission Scheme for Intelligent Reflecting Surfaces-assisted Integrated Sensing and Communication System[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1052-1065. doi: 10.11999/JEIT240853
Citation: LIANG Yan, YANG Xiaoyu, LI Fei. An Extended Kalman Filtering Based Secure Transmission Scheme for Intelligent Reflecting Surfaces-assisted Integrated Sensing and Communication System[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1052-1065. doi: 10.11999/JEIT240853

一种基于扩展卡尔曼滤波的智能反射面辅助通感一体化系统安全传输方案

doi: 10.11999/JEIT240853
基金项目: 国家自然科学基金(62271265)
详细信息
    作者简介:

    梁彦:女,副教授,研究方向为无线通信、信号处理

    杨晓宇:女,硕士生,研究方向为智能反射面与通感一体化

    李飞:女,教授,研究方向为量子智能计算、群智能算法和无线通信中的信号处理算法

    通讯作者:

    梁彦 liangyan@njupt.edu.cn

  • 中图分类号: TN915.0

An Extended Kalman Filtering Based Secure Transmission Scheme for Intelligent Reflecting Surfaces-assisted Integrated Sensing and Communication System

Funds: The National Natural Science Foundation of China (62271265)
  • 摘要: 为了解决智能反射面(IRS)辅助的通感一体化系统(ISAC)的安全通信问题,该文提出一种基于扩展卡尔曼滤波(EKF)目标追踪的安全传输方案。首先,针对作为潜在窃听者的移动感知目标,利用ISAC基站的感知功能从雷达回波中获取其状态参数,并采用EKF技术对其运动轨迹进行实时跟踪和预测。然后,利用感知目标的实时位置和信道状态信息调整基站发射波束成形和IRS反射波束成形。在此基础上,通过联合优化基站的发射波束成形、接收波束成形、上行链路用户的发射功率以及IRS的反射波束成形,最大化系统的保密速率。利用交替优化的思想将该非凸优化问题解耦为3个独立的子问题,并分别基于连续凸近似、丁克尔巴赫变换和优化最小化求解子问题。仿真结果表明,该方案可以对移动的感知目标进行有效的轨迹追踪,以提供更高的保密速率。同时证实了与没有IRS的方案相比,IRS的辅助能够实现更好的安全通信性能。
  • 图  1  系统模型

    图  2  算法收敛性验证

    图  3  基于EKF算法和PF算法的感知目标轨迹跟踪效果图

    图  4  基于EKF算法和PF算法的感知目标轨迹跟踪误差图

    图  5  系统保密速率与合法用户最大发射功率$ P_{{\text{max}}}^{\text{U}} $的关系,$(M,{N_x},{N_y}) = {\text{(50,4,4)}}$

    图  6  系统保密速率与基站发射天线数$N$的关系,$(P_{{\text{max}}}^{\text{U}},M) = (4{\text{ dBm}},50)$

    图  7  系统保密速率与IRS反射单元数量$ M $的关系,$(P_{{\text{max}}}^{\text{U}},{N_x},{N_y}) = (4{\text{ dBm}},4,4)$

    1  基于MM算法的IRS相移矩阵优化算法

     (1)输入:$\tilde \sigma _{\text{B}}^2$, $\tilde \sigma _{\text{E}}^2$, $ {{\boldsymbol{\alpha}} _{\text{B}}} $, $ {{\boldsymbol{\alpha}} _{\text{E}}} $, ${\tilde \alpha _{\text{B}}}$, ${\tilde \alpha _{\text{E}}}$, $\varepsilon $,$L$
     (2)初始化迭代次数$l = 1$, ${{\boldsymbol{v}}^{(0)}}$, ${\mu ^{(0)}} = 0$;
     (3)计算问题式(52)中的目标函数初始值${f_1}({{\boldsymbol{v}}^0})$;
     (4)重复
     (5)  根据式(49)–式(51),计算${\lambda _{\max }}({\boldsymbol{\varLambda}} )$,${\boldsymbol{d}}$;
     (6)  将式(53)代入目标函数式(47a)得到${\tilde \varpi ^ * }(\mu )$,利用二分搜索
        法求解${\varpi ^ * }(\mu ) = 0$的根${\mu '^{(l)}}$并更新${{\boldsymbol{v}}^{(l)}}$。
     (8)  计算问题式(46)中的目标函数${f_1}({{\boldsymbol{v}}^l})$。
     (9)  设置$l = l + 1$。
     (10)直到$|{f_1}({{\boldsymbol{v}}^l}) - {f_1}({{\boldsymbol{v}}^{l - 1}})|/{f_1}({{\boldsymbol{v}}^l}) \le \varepsilon $或者$l = L$。
     (11)输出${\boldsymbol{\varPhi}} = {\text{diag(}}{{\boldsymbol{v}}^ * }{\text{(}}\mu {\text{))}}$。
    下载: 导出CSV

    2  时隙$n$中求解问题(29)的交替迭代优化方案

     (1)输入:$P_{{\text{max}}}^{\text{U}}$, $P_{{\text{max}}}^{\text{B}}$, ${\varGamma _{\text{E}}}$, $\varepsilon $, $L$
     (2)根据式(24)–式(28)得到${{\boldsymbol{\hat c}}_{\text{E}}}[n + 1|n]$, ${\boldsymbol{M}}[n + 1]$;
     (3)初始化设置迭代次数$l = 1$, ${{\boldsymbol{F}}^{(0)}} = {\boldsymbol{f}}{{\boldsymbol{f}}^{\text{H}}}$, ${P^{(0)}} = P$,
        ${{\boldsymbol{W}}^{(0)}} = {\boldsymbol{w}}{{\boldsymbol{w}}^{\text{H}}}$, ${{\boldsymbol{v}}^{(0)}} = {\boldsymbol{v}}$, ${\beta ^{(0)}} = 0$;
     (4)重复
     (5)  给定${{\boldsymbol{\varPhi}} ^{\left( {l - 1} \right)}}$, $ {{\boldsymbol{w}}^{\left( {l - 1} \right)}} $,通过求解问题式(37)计算${P^{\left( l \right)}}$,
        $ {{\boldsymbol{f}}^{\left( l \right)}} $;
     (6)  给定${{\boldsymbol{\varPhi}} ^{\left( {l - 1} \right)}}$, ${P^{\left( l \right)}}$, $ {{\boldsymbol{f}}^{\left( l \right)}} $,通过求解问题式(39)计算$ {{\boldsymbol{w}}^{\left( l \right)}} $;
     (7)  给定${P^{\left( l \right)}}$, $ {{\boldsymbol{f}}^{\left( l \right)}} $, $ {{\boldsymbol{w}}^{\left( l \right)}} $,通过求解问题式(52)计算${{\boldsymbol{\varPhi}} ^{\left( l \right)}}$;
     (8)  计算问题式(29)中的目标函数$R_{\sec }^{(l)}$。
     (9)  设置$l = l + 1$。
     (10)直到$(R_{\sec }^{(l)} - R_{\sec }^{(l - 1)})/R_{\sec }^{(l)} \lt \varepsilon $或者$l = L$。
     (11)输出$P$, $ {\boldsymbol{f}} $, $ {\boldsymbol{w}} $, ${\boldsymbol{\varPhi}} $
    下载: 导出CSV
  • [1] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [2] 王友祥, 裴郁杉, 黄蓉, 等. 6G通感算一体化网络架构和关键技术研究[J]. 移动通信, 2023, 47(9): 2–10. doi: 10.3969/j.issn.1006-1010.20230904-0002.

    WANG Youxiang, PEI Yushan, HUANG Rong, et al. Network architecture and key technologies for 6G integrated communication, sensing and computing[J]. Mobile Communications, 2023, 47(9): 2–10. doi: 10.3969/j.issn.1006-1010.20230904-0002.
    [3] WU Qingqing, XU Jie, ZENG Yong, et al. A comprehensive overview on 5G-and-beyond networks with UAVs: From communications to sensing and intelligence[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 2912–2945. doi: 10.1109/JSAC.2021.3088681.
    [4] DONG Fuwang, LIU Fan, LU Shihang, et al. Waveform design for communication-assisted sensing in 6G perceptive networks[C]. 2023 IEEE/CIC International Conference on Communications in China (ICCC), Dalian, China, 2023: 1–6. doi: 10.1109/ICCC57788.2023.10233679.
    [5] LIU Fan, YUAN Weijie, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicular links: Communication served by sensing[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7704–7719. doi: 10.1109/TWC.2020.3015735.
    [6] REN Zixiang, QIU Ling, XU Jie, et al. Robust transmit beamforming for secure integrated sensing and communication[J]. IEEE Transactions on Communications, 2023, 71(9): 5549–5564. doi: 10.1109/TCOMM.2023.3286461.
    [7] JIANG Chengjun, ZHANG Chensi, HUANG Chongwen, et al. Secure beamforming design for RIS-assisted integrated sensing and communication systems[J]. IEEE Wireless Communications Letters, 2024, 13(2): 520–524. doi: 10.1109/LWC.2023.3334275.
    [8] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
    [9] ZHONG Kai, HU Jinfeng, PAN Cunhua, et al. Joint waveform and beamforming design for RIS-aided ISAC systems[J]. IEEE Signal Processing Letters, 2023, 30: 165–169. doi: 10.1109/LSP.2023.3242554.
    [10] WANG Xinyi, FEI Zesong, ZHANG J A, et al. Sensing-assisted secure uplink communications with full-duplex base station[J]. IEEE Communications Letters, 2022, 26(2): 249–253. doi: 10.1109/LCOMM.2021.3134258.
    [11] MA Shuai, SHENG Haihong, YANG Ruixin, et al. Covert beamforming design for integrated radar sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 718–731. doi: 10.1109/TWC.2022.3197940.
    [12] DELIGIANNIS A, DANIYAN A, LAMBOTHARAN S, et al. Secrecy rate optimizations for MIMO communication radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2481–2492. doi: 10.1109/TAES.2018.2820370.
    [13] SU Nanchi, LIU Fan, and MASOUROS C. Secure radar-communication systems with malicious targets: Integrating radar, communications and jamming functionalities[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 83–95. doi: 10.1109/TWC.2020.3023164.
    [14] BAI Yongqiang and HAN Shuangshuang. Security evaluation of RIS-aided V2X communication systems in low-speed scenarios[C]. 2024 IEEE 4th International Conference on Digital Twins and Parallel Intelligence (DTPI), Wuhan, China, 2024: 302–305. doi: 10.1109/DTPI61353.2024.10778720.
    [15] LIU Xin, YU Yingfeng, LI Feng, et al. Throughput maximization for RIS-UAV relaying communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19569–19574. doi: 10.1109/TITS.2022.3161698.
    [16] LUO Honghao, LIU Rang, LI Ming, et al. RIS-aided integrated sensing and communication: Joint beamforming and reflection design[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9626–9630. doi: 10.1109/TVT.2023.3248657.
    [17] HE Yinghui, CAI Yunlong, MAO Hao, et al. RIS-assisted communication radar coexistence: Joint beamforming design and analysis[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2131–2145. doi: 10.1109/JSAC.2022.3155507.
    [18] HUA Meng, WU Qingqing, CHEN Wen, et al. Secure intelligent reflecting surface-aided integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 575–591. doi: 10.1109/TWC.2023.3280179.
    [19] SALEM A A, ISMAIL M H, and IBRAHIM A S. Active reconfigurable intelligent surface-assisted MISO integrated sensing and communication systems for secure operation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4919–4931. doi: 10.1109/TVT.2022.3227319.
    [20] TEMIZ M, ALSUSA E, and DANOON L. A receiver architecture for dual-functional massive MIMO OFDM RadCom systems[C]. 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICCWorkshops49005.2020.9145285.
    [21] 王锴. 移动场景下智能超表面辅助通信系统的波束追踪技术研究[D]. [硕士论文], 华中科技大学, 2024. doi: 10.27157/d.cnki.ghzku.2024.001455.

    WANG Kai. Beamtracking technology of reconfigurable intelligent surface-assisted communication systems for mobile scenarios[D]. [Master dissertation], Huazhong University of Science and Technology, 2024. doi: 10.27157/d.cnki.ghzku.2024.001455.
    [22] XU Yabo, XU Ke, WAN Jianwei, et al. Research on particle filter tracking method based on Kalman filter[C]. 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 2018: 1564–1568. doi: 10.1109/IMCEC.2018.8469578.
    [23] LIU Peng, FEI Zesong, WANG Xinyi, et al. Securing multi-user uplink communications against mobile aerial eavesdropper via sensing[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9608–9613. doi: 10.1109/TVT.2023.3248063.
    [24] ZHOU Gui, PAN Cunhua, REN Hong, et al. Secure wireless communication in RIS-aided MISO system with hardware impairments[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1309–1313. doi: 10.1109/LWC.2021.3064992.
    [25] ZHONG Weizhi, YU Zhenhao, WU Yuhang, et al. Resource allocation for an IRS-assisted dual-functional radar and communication system: Energy efficiency maximization[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 469–482. doi: 10.1109/TGCN.2022.3233839.
    [26] ZHAO Heng, HAO Jianjun, and GUO Yijun. Joint trajectory and beamforming design for IRS-assisted anti-jamming UAV communication[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 369–374. doi: 10.1109/WCNC51071.2022.9771762.
    [27] SHEN Hong, XU Wei, GONG Shulei, et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[J]. IEEE Communications Letters, 2019, 23(9): 1488–1492. doi: 10.1109/LCOMM.2019.2924214.
    [28] PAN Cunhua, REN Hong, WANG Kezhi, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218–5233. doi: 10.1109/TWC.2020.2990766.
    [29] DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492–498. doi: 10.1287/mnsc.13.7.492.
    [30] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [31] GUO Yuan, LIU Yang, WU Qingqing, et al. Joint beamforming and power allocation for RIS aided full-duplex integrated sensing and uplink communication system[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 4627–4642. doi: 10.1109/TWC.2023.3321055.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  78
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-11
  • 修回日期:  2025-04-11
  • 网络出版日期:  2025-04-16
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回