高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高效轻量级网络的低截获概率雷达信号脉内调制识别

王旭东 吴嘉欣 陈斌斌

葛芸, 马琳, 江顺亮, 叶发茂. 基于高层特征图组合及池化的高分辨率遥感图像检索[J]. 电子与信息学报, 2019, 41(10): 2487-2494. doi: 10.11999/JEIT190017
引用本文: 王旭东, 吴嘉欣, 陈斌斌. 一种高效轻量级网络的低截获概率雷达信号脉内调制识别[J]. 电子与信息学报. doi: 10.11999/JEIT240848
Yun GE, Lin MA, Shunliang JIANG, Famao YE. The Combination and Pooling Based on High-level Feature Map for High-resolution Remote Sensing Image Retrieval[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2487-2494. doi: 10.11999/JEIT190017
Citation: WANG Xudong, WU Jiaxin, CHEN Binbin. An Efficient Lightweight Network for Intra-pulse Modulation Identification of Low Probability of Intercept Radar Signals[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240848

一种高效轻量级网络的低截获概率雷达信号脉内调制识别

doi: 10.11999/JEIT240848
基金项目: 国家自然科学基金(62271252)
详细信息
    作者简介:

    王旭东:男,副教授,研究方向为雷达信号处理、FPGA硬件实现

    吴嘉欣:女,硕士生,研究方向为雷达信号处理

    陈斌斌:男,博士生,研究方向为雷达信号处理

    通讯作者:

    王旭东 xudong@nuaa.edu.cn

  • 中图分类号: TN957.5

An Efficient Lightweight Network for Intra-pulse Modulation Identification of Low Probability of Intercept Radar Signals

Funds: The National Natural Science Foundation of China (62271252)
  • 摘要: 针对低信噪比(SNRs)下低截获概率(LPI)雷达脉内波形识别准确率低的问题,该文提出一种基于时频分析(TFA)、混合扩张卷积(HDC)、卷积块注意力模块(CBAM)和GhostNet网络的LPI雷达辐射源信号识别方法,旨在提升LPI雷达信号的识别性能。该方法先从信号预处理角度给出一种适合LPI雷达信号的时频图像增强处理方法,并基于双时频特征融合技术,有效提升了后续网络对LPI雷达信号脉内调制的识别准确率。接着改造了一种高效轻量级网络,用于对LPI雷达脉内调制信号识别,该网络在GhostNet基础上,结合HDC和CBAM,形成了改进型GhostNet,扩大了特征图的感受野并增强了网络获取通道和位置信息的能力。仿真结果表明,在–8 dB信噪比下,该方法的雷达信号识别准确率依然能够达到98.98%,并在参数数量上也优于对比网络。该文所提方法在低信噪比环境下显著提高了LPI雷达脉内波形识别的准确率,为LPI雷达信号识别领域提供了新的技术途径。
  • 图  1  时频特征图像增强预处理流程图(BPSK信号,SNR=–10 dB)

    图  2  信号预处理过程

    图  3  Ghost模块

    图  4  CBAM结构

    图  5  传统扩张卷积和混合扩张卷积的堆叠效果对比

    图  6  DCG单元结构

    图  7  DCGNet网络整体结构

    图  8  不同时频分析方法的数据集准确率对比

    图  9  不同预处理方法的数据集混淆矩阵对比

    图  10  不同网络的识别准确率对比

    图  11  不同注意力机制的可视化结果

    图  12  不同网络的识别准确率对比

    表  1  信号仿真参数表

    信号类型 参数 取值范围 单位
    BPSK 载频fc U(1/10,1/3)fs 赫兹(Hz)
    巴克码长度Ncode {7,11,13} 码元(bit)
    Costas 跳频序列长度Ns {3,4,5,6}
    基准频率fmin U(1/24,1/20)fs 赫兹(Hz)
    LFM
    NLFM
    起始频率f0 U(1/10,1/3)fs 赫兹(Hz)
    带宽B U(1/10,1/5)fs 赫兹(Hz)
    P1,P2 载频fc U(1/10,1/3)fs 赫兹(Hz)
    相位控制数M [8,12],P2码的M为偶数
    相位子波数cpp [2,5] 个/周期
    P3,P4 载频fc U(1/10,1/3)fs 赫兹(Hz)
    相位控制数M {36,64,81,100}
    相位子波数cpp [2,5] 个/周期
    T1,T2 载频fc U(1/10,1/3)fs 赫兹(Hz)
    波形段数Nk [4,6]
    T3,T4 载频fc U(1/10,1/3)fs 赫兹(Hz)
    波形段数Nk [4,6]
    调制带宽F U(1/20,1/8)fs 赫兹(Hz)
    注:“-”表示此处是一个计数单位,表示数量。
    下载: 导出CSV

    表  2  不同网络浮点运算次数和参数量比较(M)

    网络浮点运算次数参数量
    DCGNet2.821.04
    ResNet504 090.0023.53
    MobileNetV23.152.24
    MobileNetV32.284.22
    下载: 导出CSV
  • [1] CHEN Binbin, WANG Xudong, ZHU Daiyin, et al. LPI radar signals modulation recognition in complex multipath environment based on improved ResNeSt[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 8887–8900. doi: 10.1109/TAES.2024.3436634.
    [2] CHEN Tao, LIU Lizhi, and HUANG Xiangsong. LPI radar waveform recognition based on multi-branch MWC compressed sampling receiver[J]. IEEE Access, 2018, 6: 30342–30354. doi: 10.1109/ACCESS.2018.2845102.
    [3] LEI Wentai, TAN Xin, LUO Chaopeng, et al. Mutual interference suppression and signal enhancement method for ground-penetrating radar based on deep learning[J]. Electronics, 2024, 13(23): 4722. doi: 10.3390/electronics13234722.
    [4] HOU Qinghua and WU Huibin. Recognition of LPI radar signal intrapulse modulation based on CNN and time-frequency denoising[J]. Journal of Electronics and Information Science, 2024, 9(1): 142–152. doi: 10.23977/jeis.2024.090119.
    [5] REN Feitao, QUAN Daying, SHEN Lai, et al. LPI radar signal recognition based on feature enhancement with deep metric learning[J]. Electronics, 2023, 12(24): 4934. doi: 10.3390/electronics12244934.
    [6] LIANG Jingyue, LUO Zhongtao, and LIAO Renlong. Intra-pulse modulation recognition of radar signals based on efficient cross-scale aware network[J]. Sensors, 2024, 24(16): 5344. doi: 10.3390/s24165344.
    [7] LIU Yunhao, HAN Sicun, GUO Chengjun, et al. The research of intra-pulse modulated signal recognition of radar emitter under few-shot learning condition based on multimodal fusion[J]. Electronics, 2024, 13(20): 4045. doi: 10.3390/electronics13204045.
    [8] KONG S H, KIM M, HOANG L M, et al. Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6: 4207–4219. doi: 10.1109/ACCESS.2017.2788942.
    [9] 石礼盟, 杨承志, 王美玲, 等. 基于深度网络的雷达信号调制方式识别[J]. 兵器装备工程学报, 2021, 42(6): 190–193,218. doi: 10.11809/bqzbgcxb2021.06.033.

    SHI Limeng, YANG Chengzhi, WANG Meiling, et al. Recognition method of radar signal modulation method based on deep network[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 190–193,218. doi: 10.11809/bqzbgcxb2021.06.033.
    [10] 蒋伊琳, 尹子茹. 基于卷积神经网络的低截获概率雷达信号检测算法[J]. 电子与信息学报, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132.

    JIANG Yilin and YIN Ziru. Low probability of intercept radar signal detection algorithm based on convolutional neural networks[J]. Journal of Electronics & Information Technology, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132.
    [11] HUYNH-THE T, DOAN V S, HUA C H, et al. Accurate LPI radar waveform recognition with CWD-TFA for deep convolutional network[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1638–1642. doi: 10.1109/LWC.2021.3075880.
    [12] DONG Ning, JIANG Hong, LIU Yipeng, et al. Intrapulse modulation radar signal recognition using CNN with second-order STFT-based synchrosqueezing transform[J]. Remote Sensing, 2024, 16(14): 2582. doi: 10.3390/rs16142582.
    [13] QUAN Daying, REN Feitao, WANG Xiaofeng, et al. WVD‐GAN: A Wigner‐Ville distribution enhancement method based on generative adversarial network[J]. IET Radar, Sonar & Navigation, 2024, 18(6): 849–865. doi: 10.1049/rsn2.12532.
    [14] LIU Lutao and LI Xinyu. Radar signal recognition based on triplet convolutional neural network[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021(1): 112. doi: 10.1186/s13634-021-00821-8.
    [15] KALRA M, KUMAR S, and DAS B. Moving ground target detection with seismic signal using smooth pseudo Wigner-Ville distribution[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3896–3906. doi: 10.1109/TIM.2019.2932176.
    [16] HEPSIBA D and JUSTIN J. Enhancement of single channel speech quality and intelligibility in multiple noise conditions using wiener filter and deep CNN[J]. Soft Computing, 2022, 26(23): 13037–13047. doi: 10.1007/s00500-021-06291-2.
    [17] YU Xiao, WANG Songcheng, XU Hongyang, et al. Intelligent fault diagnosis of rotating machinery under variable working conditions based on deep transfer learning with fusion of local and global time–frequency features[J]. Structural Health Monitoring, 2024, 23(4): 2238–2254. doi: 10.1177/14759217231199427.
    [18] HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet: More features from cheap operations[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 1577–1586. doi: 10.1109/CVPR42600.2020.00165.
    [19] MA Danqing, LI Shaojie, DANG Bo, et al. Fostc3net: A lightweight YOLOv5 based on the network structure optimization[J]. Journal of Physics: Conference Series, 2024, 2824: 012004. doi: 10.1088/1742-6596/2824/1/012004.
    [20] WANG Zhong and LI Tong. A lightweight CNN model based on GhostNet[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 8396550. doi: 10.1155/2022/8396550.
    [21] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [22] SI Weijian, LUO Jiaji, and DENG Zhian. Radar signal recognition and localization based on multiscale lightweight attention model[J]. Journal of Sensors, 2022, 2022(1): 9970879. doi: 10.1155/2022/9970879.
    [23] BIAN Shengqin, HE Xinyu, XU Zhengguang, et al. Hybrid dilated convolution with attention mechanisms for image denoising[J]. Electronics, 2023, 12(18): 3770. doi: 10.3390/electronics12183770.
    [24] ZHAO Liquan, WANG Leilei, JIA Yanfei, et al. A lightweight deep neural network with higher accuracy[J]. PLoS One, 2022, 17(8): e0271225. doi: 10.1371/journal.pone.0271225.
    [25] LEI Yanmin, PAN Dong, FENG Zhibin, et al. Lightweight YOLOv5s human ear recognition based on MobileNetV3 and Ghostnet[J]. Applied Sciences, 2023, 13(11): 6667. doi: 10.3390/app13116667.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  44
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-09
  • 修回日期:  2025-03-10
  • 网络出版日期:  2025-03-25

目录

    /

    返回文章
    返回