高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无人机辅助联邦边缘学习通信系统的安全隐私能效研究

卢为党 冯凯 丁雨 李博 赵楠

卢为党, 冯凯, 丁雨, 李博, 赵楠. 基于无人机辅助联邦边缘学习通信系统的安全隐私能效研究[J]. 电子与信息学报. doi: 10.11999/JEIT240847
引用本文: 卢为党, 冯凯, 丁雨, 李博, 赵楠. 基于无人机辅助联邦边缘学习通信系统的安全隐私能效研究[J]. 电子与信息学报. doi: 10.11999/JEIT240847
LU Weidang, FENG Kai, DING Yu, LI Bo, ZHAO Nan. Research on Security, Privacy, and Energy Efficiency in Unmanned Aerial Vehicle-Assisted Federal Edge Learning Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240847
Citation: LU Weidang, FENG Kai, DING Yu, LI Bo, ZHAO Nan. Research on Security, Privacy, and Energy Efficiency in Unmanned Aerial Vehicle-Assisted Federal Edge Learning Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240847

基于无人机辅助联邦边缘学习通信系统的安全隐私能效研究

doi: 10.11999/JEIT240847
基金项目: 国家自然科学基金(62271447),浙江省属高校基本科研业务费专项资金(RF-C2023008)
详细信息
    作者简介:

    卢为党:男,教授,博士生导师,研究方向为智能通信、无人机通信、安全通信等

    冯凯:男,硕士生,研究方向为联邦学习等

    丁雨:女,博士生,研究方向为无人机安全通信等

    李博:男,教授,博士生导师,研究方向为空天地海一体化信息网络、6G移动通信等

    赵楠:男,教授,博士生导师,研究方向为无人机通信与网络、安全与隐蔽通信等

    通讯作者:

    丁雨 2112003309@zjut.edu.cn

Research on Security, Privacy, and Energy Efficiency in Unmanned Aerial Vehicle-Assisted Federal Edge Learning Communication Systems

Funds: The National Natural Science Foundation of China (62271447), The Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-C2023008)
  • 摘要: 无人机(UAV)辅助联邦边缘学习的通信能够有效解决终端设备数据孤岛问题和数据泄露风险。然而,窃听者可能利用联邦边缘学习中的模型更新来恢复终端设备的原始隐私数据,从而对系统的隐私安全构成极大威胁。为了克服这一挑战,该文在无人机辅助联邦边缘学习通信系统提出一种有效的安全聚合和资源优化方案。具体来说,终端设备利用其本地数据进行局部模型训练来更新参数,并将其发送给全局无人机,无人机据此聚合出新的全局模型参数。窃听者试图通过窃听终端设备发送的模型参数信号来恢复终端设备的原始数据。该文通过联合优化终端设备的传输带宽、CPU频率、发送功率以及无人机的CPU频率,最大化安全隐私能效。为了解决该优化问题,该文提出一种演进深度确定性策略梯度(DDPG)算法,通过和系统智能交互,在保证基本时延和能耗需求的情况下获得安全聚合和资源优化方案。最后,通过和基准方案对比,验证了所提方案的有效性。
  • 图  1  无人机辅助联邦边缘学习的通信系统

    图  2  不同终端设备数量下的关键性能指标

    图  3  关键性能指标VS 全局迭代次数

    图  4  不同终端设备数量下的系统最大安全隐私能效

    图  5  不同方案的关键性能指标比较

    表  1  仿真参数设置

    参数参数参数
    $ \left| {{D_n}} \right| $600$ {p^{\max }}\left( {{\text{dBm}}} \right) $20$ {c_0}\left( {{\text{cycles/bit}}} \right) $1 500
    $ \eta $0.005$ {f^{\min }}\left( {{\text{MHz}}} \right) $100$ {c_n}\left( {{\text{cycles/sample}}} \right) $$ {\mathcal{U}}\left[ {{{10}^4},3 \times {{10}^4}} \right] $
    ${\varepsilon _g}$0.01$ {f^{\max }}\left( {{\text{GHz}}} \right) $2$ BW\left( {{\text{MHz}}} \right) $3
    $ a $11.95$ F_U^{\min }\left( {{\text{GHz}}} \right) $1$ \psi \left( {{\text{kbits}}} \right) $21.84
    $ b $0.14$ F_{\text{U}}^{\max }\left( {{\text{GHz}}} \right) $6$ N $3~9
    $ {\beta _0} $$ 7 \times {10^{ - 5}} $$ \delta _0^2 = \delta _1^2\left( {{\text{dBm}}} \right) $-90$ E_n^{\max }\left( {\text{J}} \right) $20
    $ {p^{\min }}\left( {{\text{dBm}}} \right) $10$ \sigma _{n,m}^2\left( {{\text{dBm}}} \right) $-70$ E_U^{\max }\left( {\text{J}} \right) $30
    下载: 导出CSV
  • [1] BASHIR A K, VICTOR N, BHATTACHARYA S, et al. Federated learning for the healthcare metaverse: Concepts, applications, challenges, and future directions[J]. IEEE Internet of Things Journal, 2023, 10(24): 21873–21891. doi: 10.1109/JIOT.2023.3304790.
    [2] ZHANG Shiying, LI Jun, SHI Long, et al. Federated learning in intelligent transportation systems: Recent applications and open problems[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(5): 3259–3285. doi: 10.1109/TITS.2023.3324962.
    [3] ZHAO Yang, ZHAO Jun, JIANG Linshan, et al. Privacy-preserving blockchain-based federated learning for IoT devices[J]. IEEE Internet of Things Journal, 2021, 8(3): 1817–1829. doi: 10.1109/JIOT.2020.3017377.
    [4] KURUNATHAN H, HUANG Hailong, LI Kai, et al. Machine learning-aided operations and communications of unmanned aerial vehicles: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2024, 26(1): 496–533. doi: 10.1109/COMST.2023.3312221.
    [5] BAI Yang, CHEN Lixing, LI Jianhua, et al. Multicore federated learning for mobile-edge computing platforms[J]. IEEE Internet of Things Journal, 2023, 10(7): 5940–5952. doi: 10.1109/JIOT.2022.3224239.
    [6] WANG Xiaofei, HAN Yiwen, WANG Chenyang, et al. In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning[J]. IEEE Network, 2019, 33(5): 156–165. doi: 10.1109/MNET.2019.1800286.
    [7] SUN Wen, ZHAO Yong, MA Wenqiang, et al. Accelerating convergence of federated learning in MEC with dynamic community[J]. IEEE Transactions on Mobile Computing, 2024, 23(2): 1769–1784. doi: 10.1109/TMC.2023.3241770.
    [8] LIM W Y B, NG J S, XIONG Zehui, et al. Decentralized edge intelligence: A dynamic resource allocation framework for hierarchical federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(3): 536–550. doi: 10.1109/TPDS.2021.3096076.
    [9] 陈卓, 江辉, 周杨. 一种面向联邦学习对抗攻击的选择性防御策略[J]. 电子与信息学报, 2024, 46(3): 1119–1127. doi: 10.11999/JEIT230137.

    CHEN Zhuo, JIANG Hui, and ZHOU Yang. A selective defense strategy for federated learning against attacks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1119–1127. doi: 10.11999/JEIT230137.
    [10] YAN Kang, SHU Nina, WU Tao, et al. A survey of energy-efficient strategies for federated learning inmobile edge computing[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(5): 645–663. doi: 10.1631/FITEE.2300181.
    [11] LIU Tianyu, DI Boya, and SONG Lingyang. Privacy-preserving federated edge learning: Modeling and optimization[J]. IEEE Communications Letters, 2022, 26(7): 1489–1493. doi: 10.1109/LCOMM.2022.3167088.
    [12] DAO N N, PHAM Q V, TU N H, et al. Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1193–1225. doi: 10.1109/COMST.2021.3059644.
    [13] HOU Peng, JIANG Xiaohan, WANG Zongshan, et al. Federated deep reinforcement learning-based intelligent dynamic services in UAV-assisted MEC[J]. IEEE Internet of Things Journal, 2023, 10(23): 20415–20428. doi: 10.1109/JIOT.2023.3284450.
    [14] . NEHRA A, CONSUL P, BUDHIRAJA I, et al. Federated learning based trajectory optimization for UAV enabled MEC[C]. Proceedings of 2023 IEEE International Conference on Communications, Rome, Italy, 2023: 1640–1645. doi: 10.1109/ICC45041.2023.10278857.
    [15] TANG Shunpu, ZHOU Wenqi, CHEN Lunyuan, et al. Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks[J]. Physical Communication, 2021, 47: 101381. doi: 10.1016/j.phycom.2021.101381.
    [16] SEID A M, ERBAD A, ABISHU H N, et al. Multiagent federated reinforcement learning for resource allocation in UAV-enabled internet of medical things networks[J]. IEEE Internet of Things Journal, 2023, 10(22): 19695–19711. doi: 10.1109/JIOT.2023.3283353.
    [17] . GEIPING J, BAUERMEISTER H, DRöGE H, et al. Inverting gradients-how easy is it to break privacy in federated learning?[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1421.
    [18] YAO Jingjing and ANSARI N. Secure federated learning by power control for internet of drones[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(4): 1021–1031. doi: 10.1109/TCCN.2021.3076167.
    [19] POPOSKA M, PEJOSKI S, RAKOVIC V, et al. Delay minimization of federated learning over wireless powered communication networks[J]. IEEE Communications Letters, 2024, 28(1): 108–112. doi: 10.1109/LCOMM.2023.3337320.
    [20] YAO Jingjing and ANSARI N. Enhancing federated learning in fog-aided IoT by CPU frequency and wireless power control[J]. IEEE Internet of Things Journal, 2021, 8(5): 3438–3445. doi: 10.1109/JIOT.2020.3022590.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-09
  • 修回日期:  2024-12-20
  • 网络出版日期:  2025-01-17

目录

    /

    返回文章
    返回