高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能超表面辅助的非正交多址接入车联网通感一体传输与资源分配优化

李美玲 朱芸灿 申陈宁 李兴旺

李美玲, 朱芸灿, 申陈宁, 李兴旺. 智能超表面辅助的非正交多址接入车联网通感一体传输与资源分配优化[J]. 电子与信息学报, 2025, 47(4): 1043-1051. doi: 10.11999/JEIT240842
引用本文: 李美玲, 朱芸灿, 申陈宁, 李兴旺. 智能超表面辅助的非正交多址接入车联网通感一体传输与资源分配优化[J]. 电子与信息学报, 2025, 47(4): 1043-1051. doi: 10.11999/JEIT240842
LI Meiling, ZHU Yuncan, SHEN Chenning, LI Xingwang. RIS-Assisted ISAC with Non-orthogonal Multiple Access Transmission and Resource Allocation Optimization in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1043-1051. doi: 10.11999/JEIT240842
Citation: LI Meiling, ZHU Yuncan, SHEN Chenning, LI Xingwang. RIS-Assisted ISAC with Non-orthogonal Multiple Access Transmission and Resource Allocation Optimization in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1043-1051. doi: 10.11999/JEIT240842

智能超表面辅助的非正交多址接入车联网通感一体传输与资源分配优化

doi: 10.11999/JEIT240842
基金项目: 国家重点研发计划项目(2024YFE0200300),山西省科技创新人才团队专项计划(202304051001035),太原市双百攻关揭榜挂帅项目(2024TYJB0134),山西省科技成果转化引导专项(202204021301055),山西省留学人员科技活动择优资助项目(20240023),山西省科研实践创新类项目(2023KY647)
详细信息
    作者简介:

    李美玲:女,教授,研究方向为通信感知一体化、移动通信,包括认知无线电、V2X、非正交多址和物理层安全等

    朱芸灿:女,硕士生,研究方向为通信感知一体化、V2X、非正交多址技术等

    申陈宁:男,研究方向为移动通信、电力工业、电信技术等

    李兴旺:男,副教授,研究方向为无线通信、通信感知一体化、RIS、反向散射通信等

    通讯作者:

    李美玲 meilingli@tyust.edu.cn

  • 中图分类号: TN929.5

RIS-Assisted ISAC with Non-orthogonal Multiple Access Transmission and Resource Allocation Optimization in Vehicular Networks

Funds: The National Key Research and Development Program of China (2024YFE0200300), Special Fund for Science and Technology Innovation Teams of Shanxi Province (202304051001035), Taiyuan double hundred Research Project (2024TYJB0134), Shanxi Province Science and Technology Achievement Transformation Guidance Special Project (202204021301055), The Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (20240023), Shanxi Scientific Research Practice Innovation Project (2023KY647)
  • 摘要: 为应对6G密集城市环境下车联网(V2X)通信和传感路径受限问题,该文提出了一种基于可重构智能超表面(RIS)辅助的通感一体化(ISAC) V2X系统框架。针对非视距(NLOS)下的车辆移动性,采用扩展卡尔曼滤波(EKF)算法,结合ISAC回波信号中的实时信道状态信息(CSI),实现对移动车辆位置的跟踪与预测。该文提出基于非正交多址接入技术(NOMA)的多车辆间功率分配优化方案,在保证感知精度的同时提升下行链路通信总速率,并引入Karush-Kuhn-Tucker(KKT)条件作为反馈机制,避免陷入局部最优。仿真结果表明,所提系统在通信性能和感知性能方面优于传统的RIS辅助ISAC-V2X系统。
  • 图  1  系统模型图

    图  2  3维车辆状态演化示意图

    图  3  ISAC-V2X-NOMA系统模拟示意图

    图  4  VU1和VU2传感性能分析

    图  5  不同天线数下不同方案的通信性能分析

    图  6  不同RIS反射单元数量下车辆通信性能分析

    图  7  不同方案下的通信性能分析

    1  车辆功率分配算法流

     输入:用户数$K$、信噪比${{\mathrm{SINR}}_{k,n}}$、总发射功率${P_{\mathrm{T}}}$、噪声功率
     $\sigma _{\mathrm{c}}^2$、角度约束${\varepsilon _\theta }$、距离约束${\varepsilon _d}$。
     输出:每个用户的最优功率分配${\rho _{k,n}}$。
      步骤1 定义目标函数$\max \;f\left( {\boldsymbol{\rho }}\right)$。
      步骤2 构造拉格朗日函数$ L\left( {{\boldsymbol{\rho }},\xi ,\eta ,{\nu _\theta },{\nu _d}} \right) $。
      步骤3 导出KKT条件方程组。
      步骤4 使用CVX工具箱求解目标函数$\min \; - f\left( {\boldsymbol{\rho }}\right)$。
      步骤5 验证解决方案的KKT条件,
      若满足,输出最优功率分配,
      否则,重复步骤2~步骤4。
      步骤6 输出用户的最优功率分配${\rho _{k,n}}$。
    下载: 导出CSV

    表  1  车辆初始参数表

    VU1VU2
    距离(m)2520
    角度(°)9.27.66
    反射系数0.5+0.5j1+j
    速度(m/s)2020
    下载: 导出CSV
  • [1] ZHU Yishi, MAO Bomin, KAWAMOTO Y, et al. Intelligent reflecting surface-aided vehicular networks toward 6G: Vision, proposal, and future directions[J]. IEEE Vehicular Technology Magazine, 2021, 16(4): 48–56. doi: 10.1109/MVT.2021.3113890.
    [2] LI Meiling, XUE Kaixuan, CHEN Wei, et al. Secure performance of RIS-Aided NOMA in cognitive V2X networks with imperfect CSI over double Rayleigh fading[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(4): 1339–1355. doi: 10.1109/TCCN.2024.3365704.
    [3] LI Meiling, CAO Guomei, EI BOUANANI F, et al. Error performance of NOMA system with outdated, imperfect CSI, and RHI over α−μ fading channels[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2142–2155. doi: 10.1109/TVT.2023.3315119.
    [4] DEHKORDI S K, GAUDIO L, KOBAYASHI M, et al. Beam-space MIMO radar for joint communication and sensing with OTFS modulation[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6737–6749. doi: 10.1109/TWC.2023.3245207.
    [5] MENG Xiao, LIU Fan, MASOUROS C, et al. Vehicular connectivity on complex trajectories: Roadway-geometry aware ISAC beam-tracking[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7408–7423. doi: 10.1109/TWC.2023.3250442.
    [6] SHAHAM S, DING M, KOKSHOORN M, et al. Fast channel estimation and beam tracking for millimeter wave vehicular communications[J]. IEEE Access, 2019, 7: 141104–141118. doi: 10.1109/ACCESS.2019.2944308.
    [7] 林粤伟, 王溢, 张奇勋, 等. 面向6G的通信感知一体化车联网研究综述[J]. 信号处理, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002.

    LIN Yuewei, WANG Yi, ZHANG Qixun, et al. Overview of the research on 6G oriented internet of vehicles for integrated sensing and communication[J]. Journal of Signal Processing, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002.
    [8] LIU Fan, YUAN Weijie, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicular links: Communication served by sensing[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7704–7719. doi: 10.1109/TWC.2020.3015735.
    [9] YUAN Weijie, LIU Fan, MASOUROS C, et al. Bayesian predictive beamforming for vehicular networks: A low-overhead joint radar-communication approach[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1442–1456. doi: 10.1109/TWC.2020.3033776.
    [10] LIU Chang, YUAN Weijie, LI Shuangyang, et al. Predictive beamforming for integrated sensing and communication in vehicular networks: A deep learning approach[C]. ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022: 1948–1954. doi: 10.1109/ICC45855.2022.9839000.
    [11] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [12] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–6. doi: 10.1109/GLOCOM.2018.8647620.
    [13] SAIKIA P, PALA S, SINGH K, et al. Proximal policy optimization for RIS-assisted full duplex 6G-V2X communications[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(7): 5134–5149. doi: 10.1109/TIV.2023.3275632.
    [14] 张志龙, 谢文婷, 李雪菲, 等. 面向车联网的通信感知一体化资源分配算法[J]. 北京邮电大学学报, 2023, 46(6): 55–60. doi: 10.13190/j.jbupt.2022-242.

    ZHANG Zhilong, XIE Wenting, LI Xuefei, et al. Communication-sensing integrated resource allocation algorithm in vehicular networks[J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(6): 55–60. doi: 10.13190/j.jbupt.2022-242.
    [15] HAZARIKA B, SINGH K, BISWAS S, et al. Multi-agent DRL-based task offloading in multiple RIS-aided IoV networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1175–1190. doi: 10.1109/TVT.2023.3302010.
    [16] ZUO Jiakuo and LIU Yuanwei. Reconfigurable intelligent surface assisted NOMA empowered integrated sensing and communication[C]. 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 2022: 1028–1033. doi: 10.1109/GCWkshps56602.2022.10008704.
    [17] LI Meiling, XUE Peng, YUAN Hu, et al. Physical layer security for CR-NOMA network with cooperative jamming[J]. Tsinghua Science and Technology, 2025, 30(2): 708–720. doi: 10.26599/TST.2023.9010128.
    [18] LI Meiling, REN Kang, EI BOUANANI F, et al. Secure performance of RIS-NOMA system under κ-μ shadowed fading channel[J]. IEEE Wireless Communications Letters, 2024, 13(12): 3543–3547. doi: 10.1109/LWC.2024.3476951.
    [19] MLIKA Z and CHERKAOUI S. Deep deterministic policy gradient to minimize the age of information in cellular V2X communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23597–23612. doi: 10.1109/TITS.2022.3190799.
    [20] KHAN W U, JAMSHED M A, LAGUNAS E, et al. Energy efficiency optimization for backscatter enhanced NOMA cooperative V2X communications under imperfect CSI[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12961–12972. doi: 10.1109/TITS.2022.3187567.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  47
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-02-28
  • 网络出版日期:  2025-03-25
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回