Processing math: 100%
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于期望传播的差分空间调制信号检测算法

邵华 王淳 曹荻非 李卫 张海君

王光明, 邓发升, 王积勤. 用复射线理论研究波束经天线罩的传输[J]. 电子与信息学报, 1993, 15(5): 556-560.
引用本文: 邵华, 王淳, 曹荻非, 李卫, 张海君. 基于期望传播的差分空间调制信号检测算法[J]. 电子与信息学报, 2025, 47(3): 590-599. doi: 10.11999/JEIT240840
Wang Guangming, Deng Fasheng, Wang Jiqin. STUDY OF THE BEAM TRANSMISSION PROPERTIES OF RADOME USING COMPLEX RAY THEORY[J]. Journal of Electronics & Information Technology, 1993, 15(5): 556-560.
Citation: SHAO Hua, WANG Chun, CAO Difei, LI Wei, ZHANG Haijun. Expectation Propagation-based Signal Detection for Differential Spatial Modulation[J]. Journal of Electronics & Information Technology, 2025, 47(3): 590-599. doi: 10.11999/JEIT240840

基于期望传播的差分空间调制信号检测算法

doi: 10.11999/JEIT240840
基金项目: 雄安科技创新专项(2022XAGG0114),国家自然基金(62101030, 62102021)
详细信息
    作者简介:

    邵华:男,讲师,研究方向为无线通信物理层算法,智能通信等

    王淳:女,硕士生,研究方向为人工智能,智能系统,大模型语义通信等

    曹荻非:男,博士生,研究方向为物联网,高可靠通信

    李卫:女,教授,研究方向为物联网通信

    张海君:男,教授,研究方向为无线资源管控、高可靠通信网络

    通讯作者:

    邵华 shaohua@ustb.edu.cn

  • 中图分类号: TN925

Expectation Propagation-based Signal Detection for Differential Spatial Modulation

Funds: Science, Technology &Innovation Project of Xiongan New Area (2022XAGG0114), The National Natural Science Foundation of China (62101030, 62102021)
  • 摘要: 设计高效且复杂度低的检测算法是差分空间调制(DSM)系统中的一大关键问题。该文提出了一种多相移键控差分空间调制系统的贝叶斯期望传播(EP)信号检测方法,将DSM的信号检测问题转化为待检测信号的参数估计问题,通过迭代估计先验和后验分布的参数,获得检测信号的估计值。该算法将原始的信号检测问题分解为天线域信息和星座域信息两部分,其中天线域检测通过期望传播算法迭代求取,星座域比特通过迭代过程中最优解调获得,降低了算法复杂度。进一步地,该文针对传统期望传播方法中噪声参数进行了扩展,在迭代过程中不断调整噪声项的矩估计,获得了比传统方案更好的性能。该文对所提近最优解调方案进行了仿真验证,结果表明所提方案性能优于传统线性检测方案;所提的基于期望传播的噪声修正方案性能优于传统恒值方案;在不同天线配置和调制阶数情况下,所提方案均能够快速收敛。
  • 图  1  3×3 MIMO下不同算法性能对比

    图  2  4×4 MIMO下不同算法性能对

    图  3  5×5 MIMO下不同算法性能对比

    图  4  不同调制阶数下算法性能对比

    图  5  不同迭代次数对于算法性能影响

    图  6  噪声项特殊处理的误码率性能对比

    1  基于期望传播的DSM信号检测流程

     输入:Yt, Yt1, P(a),a{1,2,,A}, σ2n
     输出:信息比特的对数似然比
     (1) For l=1:T
     (2)  根据式(23)更新噪声分布参数
     (3)  根据式(15)、式(24)、式(25)计算st后验概率分布q(st)
        参数
     (4)   For a=1:A
     (5)    根据Plt(a)和式(18)计算最优的信号域符号Sla
     (6)    将ˉμs逆向量化为ˉSlt,根据式(17)计算每个候选图样的
          欧式距离Ml(a)
     (7)   End
     (8)  根据式(19)将Ml(a)转化为归一化的天线图样概率分布
        Plb(a)
     (9)  根据式(21)更新先验分布参数μls, Σls,作为下一轮迭代输入。
     (10) End
     (11) 输出步骤(6)中最大Pb(a)对应的天线图样
     (12) 输出最大概率Pb(a)的对应的信号域符号Sa
     (13) 根据式(26)计算天线比特的LLRant
     (14) 根据式(27)计算星座比特的LLRsig
     (15) 输出DSM的所有比特的LLR(式(28))
    下载: 导出CSV
  • [1] ZHANG Zhenyu, GONG Caihong, DONG Yuanyuan, et al. Expectation propagation aided signal detection for uplink massive generalized spatial modulation MIMO systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2006–2018. doi: 10.1109/TWC.2021.3108852.
    [2] MESLEH R Y, HAAS H, SINANOVIC S, et al. Spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2228–2241. doi: 10.1109/TVT.2007.912136.
    [3] JEGANATHAN J, GHRAYEB A, and SZCZECINSKI L. Spatial modulation: Optimal detection and performance analysis[J]. IEEE Communications Letters, 2008, 12(8): 545–547. doi: 10.1109/LCOMM.2008.080739.
    [4] GUO Shuaishuai and QU Kaiqian. Beamspace modulation for near field capacity improvement in XL-MIMO communications[J]. IEEE Wireless Communications Letters, 2023, 12(8): 1434–1438. doi: 10.1109/LWC.2023.3277666.
    [5] HE Longzhuang, WANG Jintao, and SONG Jian. Spatial modulation for more spatial multiplexing: RF-chain-limited generalized spatial modulation aided MM-wave MIMO with hybrid precoding[J]. IEEE Transactions on Communications, 2018, 66(3): 986–998. doi: 10.1109/TCOMM.2017.2773543.
    [6] MESLEH R, IKKI S S, and AGGOUNE H M. Quadrature spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2738–2742. doi: 10.1109/TVT.2014.2344036.
    [7] YOUNIS A, MESLEH R, and HAAS H. Quadrature spatial modulation performance over Nakagami-m fading channels[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10227–10231. doi: 10.1109/TVT.2015.2478841.
    [8] ABU-HUDROUSS A M, EL ASTAL M T O, AL HABBASH A H, et al. Signed quadrature spatial modulation for MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2740–2746. doi: 10.1109/TVT.2020.2964118.
    [9] ELFADIL H, MALEKI M, and BAHRAMI H R. A novel low-complexity adaptive bit mapping scheme for spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3674–3678. doi: 10.1109/TVT.2017.2780900.
    [10] LIU Chaowen, YANG Lieliang, and WANG Wenjie. Transmitter-precoding-aided spatial modulation achieving both transmit and receive diversity[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1375–1388. doi: 10.1109/TVT.2017.2757403.
    [11] WANG Leijun, LIANG Chulong, YANG Zhihua, et al. Two-layer coded spatial modulation with block Markov superposition transmission[J]. IEEE Transactions on Communications, 2016, 64(2): 643–653. doi: 10.1109/TCOMM.2015.2506170.
    [12] AN Bo, WU Liang, ZHANG Zaichen, et al. Multi-user successive-coded spatial modulation scheme based on beamforming[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 10485–10498. doi: 10.1109/TVT.2022.3183084.
    [13] YANG Shuaixin, XIAO Yue, CHEN Jiangong, et al. Integrated polarization and spatial modulation[J]. IEEE Transactions on Communications, 2023, 71(1): 527–539. doi: 10.1109/TCOMM.2022.3224016.
    [14] YOUNIS A, SERAFIMOVSKI N, MESLEH R, et al. Generalised spatial modulation[C]. 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1498–1502. doi: 10.1109/ACSSC.2010.5757786.
    [15] MESLEH R, ALTHUNIBAT S, and YOUNIS A. Differential quadrature spatial modulation[J]. IEEE Transactions on Communications, 2017, 65(9): 3810–3817. doi: 10.1109/TCOMM.2017.2712720.
    [16] TRAN T Q, SUGIURA S, and LEE K. Ordering- and partitioning-aided sphere decoding for generalized spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 10087–10091. doi: 10.1109/TVT.2018.2859597.
    [17] RAJASHEKAR R, Yang Lieliang, HARI K V S, et al. L. Hanzo. Transmit antenna subset selection in generalized spatial modulation systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1979–1983. doi: 10.1109/TVT.2018.2889024.
    [18] LAKSHMI NARASIMHAN T, RAVITEJA P, and CHOCKALINGAM A. Generalized spatial modulation in large-scale multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3764–3779. doi: 10.1109/TWC.2015.2411651.
    [19] AN Jiancheng, XU Chao, LIU Yusha, et al. The achievable rate analysis of generalized quadrature spatial modulation and a pair of low-complexity detectors[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5203–5215. doi: 10.1109/TVT.2022.3155244.
    [20] LIU Peng, BLUMENSTEIN J, PEROVIĆ N S, et al. Performance of generalized spatial modulation MIMO over measured 60GHz indoor channels[J]. IEEE Transactions on Communications, 2018, 66(1): 133–148. doi: 10.1109/TCOMM.2017.2754280.
    [21] XIANG Luping, LIU Yusha, YANG Lieliang, et al. Low complexity detection for spatial modulation aided sparse code division multiple access[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12858–12871. doi: 10.1109/TVT.2021.3121128.
    [22] LU Lu, LI G Y, LEE SWINDLEHURST A, et al. An overview of massive MIMO: Benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742–758. doi: 10.1109/JSTSP.2014.2317671.
    [23] BIAN Yuyang, CHENG Xiang, WEN Miaowen, et al. Differential spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2015, 64(7): 3262–3268. doi: 10.1109/TVT.2014.2348791.
    [24] WEN Miaowen, CHENG Xiang, BIAN Yuyang, et al. A low-complexity near-ML differential spatial modulation detector[J]. IEEE Signal Processing Letters, 2015, 22(11): 1834–1838. doi: 10.1109/LSP.2015.2425042.
    [25] MARTIN P A. Differential spatial modulation for APSK in time-varying fading channels[J]. IEEE Communications Letters, 2015, 19(7): 1261–1264. doi: 10.1109/LCOMM.2015.2426172.
    [26] WEI R Y and LIN T Y. Low-complexity differential spatial modulation[J]. IEEE Wireless Communications Letters, 2019, 8(2): 356–359. doi: 10.1109/LWC.2018.2872990.
    [27] JOSE D and SAMEER S M. A low complexity detector with near-ML performance for generalized differential spatial modulation[C]. 2020 International Conference on Signal Processing and Communications, Bangalore, India, 2020: 1–5. doi: 10.1109/SPCOM50965.2020.9179552.
    [28] WEI R Y and CHANG Chenwei. A low-complexity soft-output detector for differential spatial modulation[J]. IEEE Wireless Communications Letters, 2022, 11(5): 1077–1081. doi: 10.1109/LWC.2022.3156889.
    [29] XIU Haotian, YANG Lin, YU Daizhong, et al. A DFDD based detector for space-time block coded differential spatial modulation under time-selective channels[J]. IEEE Communications Letters, 2022, 26(2): 359–363. doi: 10.1109/LCOMM.2021.3132697.
    [30] YANG Yukun, HAI Han, JIANG XueQin, et al. Low-complexity detectors for space-time block coded differential spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 12231–12236. doi: 10.1109/TVT.2024.3381863.
    [31] SHAMASUNDAR B and CHOCKALINGAM A. A DNN architecture for the detection of generalized spatial modulation signals[J]. IEEE Communications Letters, 2020, 24(12): 2770–2774. doi: 10.1109/LCOMM.2020.3018260.
    [32] HE Le, FAN Lisheng, LEI Xianfu, et al. Learning-based MIMO detection with dynamic spatial modulation[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(6): 1489–1502. doi: 10.1109/TCCN.2023.3306853.
    [33] FENG Xinyu, EL-HAJJA M, XU Chao, et al. Deep learning-based soft iterative-detection of channel-coded compressed sensing-aided multi-dimensional index modulation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7530–7544. doi: 10.1109/TVT.2023.3241440.
    [34] WEI R Y, CHEN S L, LIN Y H, et al. Bandwidth-efficient generalized differential spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 601–610. doi: 10.1109/TVT.2022.3202912.
    [35] XIU Haotian, YU Daizhong, GAO Peiyuan, et al. An enhanced system model for differential spatial modulation system under fast fading channels and a corresponding DFDD based low- complexity detector[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2227–2235. doi: 10.1109/TVT.2023.3316275.
    [36] MURILLO-FUENTES J J, SANTOS I, ARADILLAS J C, et al. A low-complexity double EP-based detector for iterative detection and decoding in MIMO[J]. IEEE Transactions on Communications, 2021, 69(3): 1538–1547. doi: 10.1109/TCOMM.2020.3043771.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  37
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-03-04
  • 网络出版日期:  2025-03-14
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回