高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进U型网络的火焰光场图像降噪及温度场重建

单良 孙健 洪波 孔明

唐璞, 时振栋, 韩周安, 刘宏伟. 双反射面天线的雷达散射截面[J]. 电子与信息学报, 2003, 25(3): 424-426.
引用本文: 单良, 孙健, 洪波, 孔明. 基于改进U型网络的火焰光场图像降噪及温度场重建[J]. 电子与信息学报. doi: 10.11999/JEIT240836
Tang Pu, Shi Zhendong, Han Zhouan, Liu Hongwci . Radar cross section of bi-reflective antenna[J]. Journal of Electronics & Information Technology, 2003, 25(3): 424-426.
Citation: SHAN Liang, SUN Jian, HONG Bo, KONG Ming. Noise Reduction and Temperature Field Reconstruction of Flame Light Field Images Based on Improved U-network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240836

基于改进U型网络的火焰光场图像降噪及温度场重建

doi: 10.11999/JEIT240836
基金项目: 国家自然科学基金(51874264, 52076200),中央引导地方科技发展资金项目(2023ZY1008)
详细信息
    作者简介:

    单良:女,教授,硕士生导师,研究方向为信号处理、光电检测

    孙健:男,硕士生,研究方向为信号处理

    洪波:女,讲师,硕士生导师,研究方向为信号处理

    孔明:男,教授,博士生导师,研究方向为光电检测

    通讯作者:

    孔明 mkong@cjlu.edu.cn

  • 中图分类号: TN919.81; TP391

Noise Reduction and Temperature Field Reconstruction of Flame Light Field Images Based on Improved U-network

Funds: The National Natural Science Foundation of China (51874264, 52076200), The Central Guiding Local Science and Technology Development Fund Projects of China (2023ZY1008)
  • 摘要: 火焰光场图像在形成过程中夹杂的辐射噪声和成像噪声会降低火焰温度场3维重建精度,该文提出一种基于改进U型网络(UNet)的降噪模型,该模型针对辐射噪声和成像噪声的特性以及复杂火焰图像的纹理信息设计了背景净化模块和边缘信息优化模块。通过密集卷积操作对图像背景层进行特征提取,着重净化夹杂在图像背景层的辐射噪声。通过UNet模块中对称的编码器-解码器网络结构和跳跃连接,对通道间的辐射噪声和表层的成像噪声降噪。最后利用边缘优化模块对图像细节信息进行提取,从而获得更高质量的火焰光场图像。数值模拟部分,在火焰光场图像上混合加入信噪比为10 dB的辐射噪声和成像噪声,经该文模型降噪后的峰值信噪比(PSNR)和结构相似指数(SSIM)高达47 dB和0.9931,与其他降噪模型相比有明显优势。随后,将火焰光场图像先经该文降噪模型降噪,再进行温度场重建,测得重建平均相对误差比未降噪时降低了约37%~57%,明显提升了火焰温度场3维重建的精度。实验部分,获取真实蜡烛火焰和丁烷火焰光场图像,经该文降噪模型降噪后的蜡烛火焰图像SSIM高达0.9870,降噪后的丁烷燃烧火焰图像SSIM为0.9808
  • 图  1  BUE降噪模型整体结构

    图  2  火焰光场图像示例

    图  3  不同降噪算法处理后的火焰图像

    图  4  不同降噪算法处理后的火焰图像降噪结果

    图  5  BPM和EIEM模块在降噪过程中的效果

    图  6  测试集消融实验对比图

    图  7  含降噪预处理的火焰温度场3维重建模型

    图  8  重建温度分布及误差分布

    图  9  火焰光场图像采集

    图  10  不同算法对蜡烛火焰和丁烷火焰的降噪结果对比

    表  1  合成数据集

    数据集类型 噪声描述(dB) 数量
    无噪图像 800
    单辐射噪声图像 辐射噪声(ηrad=10, 15, 20) 800
    单成像噪声图像 成像噪声 (ηimg=10, 15, 20) 800
    混合噪声图像 等量辐射噪声和成像噪声(ηrad=ηimg=10, 15, 20) 800
    下载: 导出CSV

    表  2  MobileNet和BUE-MobileNet 重建火焰温度场的MRE和SSIM结果

    噪声 η(dB) MobileNet
    (MRE(%)/SSIM)
    BUE-MobileNet
    (MRE(%)/SSIM)
    辐射噪声 15 0.35/0.9990 0.16/0.999 7
    成像噪声 15 0.33/0.9990 0.14/0.999 8
    混合噪声 15 0.45/0.9943 0.28/0.998 5
    下载: 导出CSV
  • [1] 张小雪, 王雨, 吴思远, 等. 基于级联稀疏查询机制的轻量化火灾检测算法[J]. 光电工程, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216.

    ZHANG Xiaoxue, WANG Yu, WU Siyuan, et al. An improved lightweight fire detection algorithm based on cascade sparse query[J]. Opto-Electronic Engineering, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216.
    [2] 王佳. 钙钛矿单探测器光谱测量方法及火焰温度探测研究[D]. [博士论文], 中北大学, 2023. doi: 10.27470/d.cnki.ghbgc.2023.000030.

    WANG Jia. Research on perovskite single detector spectrumeter for flame temperature detection[D]. [Ph. D. dissertation], North University of China, 2023. doi: 10.27470/d.cnki.ghbgc.2023.000030.
    [3] 钟越, 蔡敏男, 徐文江, 等. 基于深度学习的湍流火焰三维羟基浓度场的时间超分辨率成像[J]. 航空动力学报, 2024, 39(12): 20230071. doi: 10.13224/j.cnki.jasp.20230071.

    ZHONG Yue, CAI Minnan, XU Wenjiang, et al. Temporal super-resolution imaging of 3D OH concentration field in turbulent flame based on deep learning[J]. Journal of Aerospace Power, 2024, 39(12): 20230071. doi: 10.13224/j.cnki.jasp.20230071.
    [4] 张杰. 基于光场成像的火焰三维温度场测量方法研究[D]. [博士论文], 东南大学, 2018.

    ZHANG Jie. Three-dimensional temperature measurement of flame based on light field imaging[D]. [Ph. D. dissertation], Southeast University, 2018. doi: 10.27014/d.cnki.gdnau.2021.004361.
    [5] 张杰. 基于深度学习和光场成像的火焰三维温度场重建[D]. [硕士论文], 东南大学, 2021.

    ZHANG Jie. Rapid reconstruction of 3D flame temperature distribution based on deep learning and light field imaging[D]. [Master dissertation], Southeast University, 2021. doi: 10.27014/d.cnki.gdnau.2021.004361.
    [6] 孙安泰. 基于深度学习的火焰三维温度场层析重建及预测研究[D]. [硕士论文], 哈尔滨工业大学, 2021. doi: 10.27061/d.cnki.ghgdu.2021.003583.

    SUN Antai. Tomography reconstruction and prediction of three-dimensional temperature field of flame based on deep learning[D]. [Master dissertation], Harbin Institute of Technology, 2021. doi: 10.27061/d.cnki.ghgdu.2021.003583.
    [7] TIAN Chunwei, FEI Lunke, ZHENG Wenxian, et al. Deep learning on image denoising: An overview[J]. Neural Networks, 2020, 131: 251–275. doi: 10.1016/j.neUNet.2020.07.025.
    [8] CAI Minnan, LUO Weiyi, XU Wenjiang, et al. Development of learning-based noise reduction and image reconstruction algorithm in two dimensional Rayleigh thermometry[J]. Optik, 2021, 248: 168082. doi: 10.1016/j.ijleo.2021.168082.
    [9] 邓安东. 基于深度学习的火焰温度场重建及火焰图像降噪方法研究[D]. [硕士论文], 上海交通大学, 2021. doi: 10.27307/d.cnki.gsjtu.2021.000774.

    DENG Andong. Research on temperature field reconstruction and image denoising of flame based on deep learning[D]. [Master dissertation], Shanghai Jiao Tong University, 2021. doi: 10.27307/d.cnki.gsjtu.2021.000774.
    [10] NIU Zhitian, QI Hong, SHI Jingwen, et al. Three-dimensional rapid visualization of flame temperature field via compression and noise reduction of light field imaging[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106270. doi: 10.1016/j.icheatmasstransfer.2022.106270.
    [11] 李晓欢, 王霞, 王丛赫, 等. 基于残差UNet的水下Mueller矩阵图像去散射算法[J]. 光学学报, 2022, 42(24): 2410001. doi: 10.3788/AOS202242.2410001.

    LI Xiaohuan, WANG Xia, WANG Conghe, et al. De-scattering algorithm for underwater mueller matrix images based on residual UNet[J]. Acta Optica Sinica, 2022, 42(24): 2410001. doi: 10.3788/AOS202242.2410001.
    [12] 李潇凡, 王胜强, 翁轩, 等. 基于UNet深度学习算法的东海大型漂浮藻类遥感监测[J]. 光学学报, 2021, 41(2): 0201002. doi: 10.3788/AOS202141.0201002.

    LI Xiaofan, WANG Shengqiang, WENG Xuan, et al. Remote sensing of floating macroalgae blooms in the East China Sea based on UNet deep learning model[J]. Acta Optica Sinica, 2021, 41(2): 0201002. doi: 10.3788/AOS202141.0201002.
    [13] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2480–2495. doi: 10.1109/TPAMI.2020.2968521.
    [14] THECKEDATH D and SEDAMKAR R R. Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks[J]. SN Computer Science, 2020, 1(2): 79. doi: 10.1007/s42979-020-0114-9.
    [15] 寇旗旗, 程志威, 程德强, 等. 基于蓝图分离卷积的轻量化矿井图像超分辨率重建方法[J]. 煤炭学报, 2024, 49(9): 4038–4050. doi: 10.13225/j.cnki.jccs.2023.1101.

    KOU Qiqi, CHENG Zhiwei, CHENG Deqiang, et al. Lightweight super resolution method based on blueprint separable convolution for mine image[J]. Journal of China Coal Society, 2024, 49(9): 4038–4050. doi: 10.13225/j.cnki.jccs.2023.1101.
    [16] 冯宇旭, 李裕梅. 深度学习优化器方法及学习率衰减方式综述[J]. 数据挖掘, 2018, 8(4): 186–200. doi: 10.12677/HJDM.2018.84020.

    FENG Yuxu and LI Yumei. An overview of deep learning optimization methods and learning rate attenuation methods[J]. Hans Journal of Data Mining, 2018, 8(4): 186–200. doi: 10.12677/HJDM.2018.84020.
    [17] LIU Jiaming, SUN Yu, XU Xiaojian, et al. Image restoration using total variation regularized deep image prior[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 7715–7719. doi: 10.1109/ICASSP.2019.8682856.
    [18] 周成, 黄贺艳, 刘兵, 等. 基于混合散斑图的压缩计算鬼成像方法研究[J]. 光学学报, 2016, 36(9): 0911001. doi: 10.3788/AOS201636.0911001.

    ZHOU Cheng, HUANG Heyan, LIU Bing, et al. Hybrid speckle-pattern compressive computational ghost imaging[J]. Acta Optica Sinica, 2016, 36(9): 0911001. doi: 10.3788/AOS201636.0911001.
    [19] 孙俊, 许传龙, 张彪, 等. 多焦距微透镜阵列光场成像火焰三维温度场测量[J]. 工程热物理学报, 2017, 38(10): 2164–2170.

    SUN Jun, XU Chuanlong, ZHANG Biao, et al. Three-dimensional temperature measurement of the flame using the light field camera with a multiple focus microlens array[J]. Journal of Engineering Thermophysics, 2017, 38(10): 2164–2170.
    [20] 龙超, 金恒, 黎玲, 等. 基于特征融合的非局部均值CT图像降噪[J]. 光学学报, 2022, 42(11): 1134024. doi: 10.3788/AOS202242.1134024.

    LONG Chao, JIN Heng, LI Ling, et al. CT Image denoising with non-local means based on feature fusion[J]. Acta Optica Sinica, 2022, 42(11): 1134024. doi: 10.3788/AOS202242.1134024.
    [21] SARA U, AKTER M, and UDDIN M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8–18. doi: 10.4236/jcc.2019.73002.
    [22] GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722. doi: 10.1109/CVPR.2019.00181.
    [23] MURALI V and SUDEEP P V. Image denoising using DnCNN: An exploration study[M]. JAYAKUMARI J, KARAGIANNIDIS G K, MA Maode, et al. Advances in Communication Systems and Networks: Select Proceedings of ComNet 2019. Singapore: Springer, 2020: 847–859. doi: 10.1007/978-981-15-3992-3_72.
    [24] TIAN Chunwei, XU Yong, and ZUO Wangmeng. Image denoising using deep CNN with batch renormalization[J]. Neural Networks, 2020, 121: 461–473. doi: 10.1016/j.neunet.2019.08.022.
    [25] WEISS K, KHOSHGOFTAAR T M, and WANG Dingding. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 9. doi: 10.1186/s40537-016-0043-6.
    [26] SINHA D and EL-SHARKAWY M. Thin mobilenet: An enhanced mobilenet architecture[C]. The 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, USA, 2019: 280–285. doi: 10.1109/UEMCON47517.2019.8993089.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  35
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-02-22
  • 网络出版日期:  2025-03-05

目录

    /

    返回文章
    返回