Integrated Circularly Polarized Antenna and RF Module Design for Low-Temperature Co-fired Ceramic IoT Terminals
-
摘要: 针对物联网中无线收发系统天线低轮廓集成需求,该文基于低温共烧陶瓷(LTCC)工艺设计了一款圆极化集成天线。该天线利用LTCC工艺3维层合结构,将3 dB耦合器馈电结构,印刷辐射贴片,蓝牙芯片以及外围控制电路一体化集成,采用LTCC镂空结构有效拓展了天线的带宽。设计的天线和电路基板进行了样品制备,天线的整体尺寸为: $ {\text{0}}{\text{.37}}{\lambda _{\text{0}}} \times {\text{0}}{\text{.37}}{\lambda _{\text{0}}} \times {\text{0}}{\text{.033}}{\lambda _{\text{0}}} $ ($ {\lambda _{\text{0}}} $为中心频率处的自由空间波长),充分体现了其低轮廓特性。将天线加载到电路系统中进行通信测试,结果表明该天线具有良好的圆极化特性和实用特性。Abstract:
Objective With the ongoing advancement of the Internet of Things (IoT) and the increasing integration of communication devices, there is a growing need for miniaturized, low-profile, and polarized antennas. To meet these needs, Antenna-in-Package (AiP) technology, which integrates the functional modules of the Radio Frequency (RF) system and enables multi-functional design, has emerged as a key development for wireless system miniaturization. Currently, two main antenna packaging technologies are used: Monolithic Microwave Integrated Circuit (MMIC) and Multi-Chip Module (MCM). MMIC faces limitations due to material and process constraints, making it difficult to integrate a large number of passive components. In contrast, MCM facilitates the integration of multiple IC chips onto a single substrate. It employs Surface-Mount Technology (SMT) for antenna design, using advanced microelectronic assembly and interconnection techniques to combine these components into a complete circuit system. Low-Temperature Co-Fired Ceramic (LTCC) technology is crucial in MCM, offering high-density 3D interconnect capabilities, low loss, high-temperature resistance, and other benefits, which make it widely used in communication applications. Integrated antennas based on LTCC technology offer high integration, compact size, light weight, and broad applicability, making them a focus of global research. While microstrip patch antennas are suitable for low-profile, circular polarization, a key challenge is using LTCC technology to widen the bandwidth of these antennas and integrate them with transceiver modules. This paper explores the development of a compact, wideband planar circularly polarized antenna using LTCC technology, integrated with a transceiver chip to form a miniaturized transceiver module. This innovation extends the use of AiP technology in IoT systems and has significant engineering implications. Methods To meet the increasing demand for low-profile integrated antennas in wireless transceiver systems for the IoT, this paper investigates and presents a circularly polarized integrated antenna based on LTCC technology. The antenna uses a 3D laminated LTCC structure to integrate the 3 dB coupler feed, printed radiating patch, Bluetooth chip, and associated peripheral control circuits. A detailed analysis of the LTCC laminate structure leads to several design enhancements, including structural hollowing, an integrated feed structure, and clearance processing. These improvements effectively expand the antenna bandwidth and significantly increase its gain, while preserving the low-profile circular polarization characteristics. The antenna is then integrated with an RF chip for packaging. Experimental results confirm that the RF transceiver module is compact, supports a long communication range, and meets the specific demands of IoT applications, demonstrating significant engineering potential, reliability, and high practical value. Results and Discussions Based on transmission line theory, this paper proposes a hollow structure in the LTCC laminate process to reduce the effective dielectric constant, significantly expanding the antenna bandwidth. The integration of the 3 dB coupler feed structure, printed radiating patch, Bluetooth chip, and peripheral control circuits allows for seamless integration with the transceiver module. Simulation results show that the antenna’s impedance bandwidth spans from 2.15 to 2.59 GHz, with a return loss of less than –10 dB and an axial ratio below 3 dB. The antenna is fabricated using LTCC technology, with dimensions of 0.37λ0×0.37λ0×0.33λ0 (λ0 is the free space wavelength at the central frequency). Measured results closely match the simulation data ( Figure 8 ), confirming that the design effectively broadens the bandwidth while maintaining a compact size, thus validating the proposed hollow structure. Finally, the antenna is integrated with the RF circuit substrate to form a complete transceiver system (Figure 11 ). Test results demonstrate that the circularly polarized antenna offers excellent engineering application potential and high practical value (Tables 3 and4 ).Conclusions This paper presents the design of a circularly polarized integrated antenna based on LTCC technology. The device integrates a 3 dB coupler feed structure, printed radiating patch, Bluetooth chip, and peripheral control circuits, with the hollow structure effectively broadening the antenna bandwidth. The fabricated antenna meets the performance requirements for Bluetooth systems, with an axial ratio and return loss that align with system specifications. The antenna’s size is 0.37λ0×0.37λ0×0.33λ0, demonstrating its low-profile characteristics. The hollow structure at the base integrates well with the transceiver chip, enhancing its engineering application potential. Finally, the seamless integration of the antenna with the wireless transceiver chip forms a complete, highly functional module. Measured results confirm its excellent circular polarization and practical characteristics. The proposed design approach provides valuable insights for the future development of integrated AiP solutions. -
表 1 3 dB耦合器的尺寸(mm)
L1 L2 L3 L4 L5 2.55 16.7 15.6 6.9 2.55 L6 L7 L8 W1 W2 8.65 5.5 6.9 0.6 1.2 表 2 设计的天线与相关天线的性能对比表
表 3 丢包率测试结果
距离(m) 丢包率(%) 5 0 10 0 20 0 表 4 10 m 处的丢包率测试结果
方向(°) 丢包率(%) 0 0 90 0 180 0 270 0 -
[1] 陈晓明, 魏建川, 黄崇文. 面向6G无线网络的全息多输入多输出技术综述[J]. 电子与信息学报, 2024, 46(5): 1703–1715. doi: 10.11999/JEIT231140.CHEN Xiaoming, WEI Jianchuan, and HUANG Chongwen. Overview of holographic multiple-input multiple output technology for 6G wireless networks[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1703–1715. doi: 10.11999/JEIT231140. [2] 徐仲麟, 吴林晟, 佘胜团, 等. 面向低轨卫星通信的K波段LTCC多通道集成接收前端模块[J]. 电子学报, 2022, 50(6): 1389–1398. doi: 10.12263/DZXB.20211023.XU Zhonglin, WU Linsheng, SHE Shengtuan, et al. A K-band LTCC multi-channel integrated receiving front-end module for low earth orbit satellite communication[J]. Acta Electronica Sinica, 2022, 50(6): 1389–1398. doi: 10.12263/DZXB.20211023. [3] 姜海滨. 多芯片组件技术在航天光学遥感器中的应用[J]. 光学技术, 2008, 34(S1): 40–42. doi: 10.3321/j.issn:1002-1582.2008.z1.046.JIANG Haibin. The applications of MCM technic in the spacenight optics remote sensors[J]. Optical Technique, 2008, 34(S1): 40–42. doi: 10.3321/j.issn:1002-1582.2008.z1.046. [4] 王威, 张玲, 吴亚光, 等. 微波毫米波用低介电常数低温共烧陶瓷研究进展[J]. 硅酸盐学报, 2023, 51(4): 934–948. doi: 10.14062/j.issn.0454-5648.20220687.WANG Wei, ZHANG Ling, WU Yaguang, et al. Recent progress on low-permittivity LTCC for microwave/millimeter wave applications[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 934–948. doi: 10.14062/j.issn.0454-5648.20220687. [5] 刘鸿飞. 基于特征模理论的定向天线研究与设计[D]. [硕士论文], 深圳大学, 2022. doi: 10.27321/d.cnki.gszdu.2022.001296.LIU Hongfei. Research and design of directional antenna based on characteristic mode theory[D]. [Master dissertation], Shenzhen University, 2022. doi: 10.27321/d.cnki.gszdu.2022.001296. [6] TIAN Haozhan, JIANG Lijun, and ITOH T. Compact endfire coupled-mode patch antenna with vertical polarization[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 5885–5891. doi: 10.1109/TAP.2019.2922736. [7] 周东, 孙玉发, 胡少启, 等. 一种带宽展宽的圆极化微带天线的设计[J]. 中国科学技术大学学报, 2015, 45(7): 582–587. doi: 10.3969/j.issn.0253-2778.2015.07.006.ZHOU Dong, SUN Yufa, HU Shaoqi, et al. Design of circularly polarized microstrip antenna with bandwidth broadening[J]. Journal of University of Science and Technology of China, 2015, 45(7): 582–587. doi: 10.3969/j.issn.0253-2778.2015.07.006. [8] 刘柄之, 杨曙辉, 陈迎潮. 基于单馈点的多频段及宽带圆极化微带天线研究综述[J]. 中国传媒大学学报(自然科学版), 2023, 30(4): 69–78. doi: 10.16196/j.cnki.issn.1673-4793.2023.04.007.LIU Bingzhi, YANG Shuhui, and CHEN Yingchao. Review of multiband and wideband circularly polarized microstrip antennas based on single feed[J]. Journal of Communication University of China (Science and Technology), 2023, 30(4): 69–78. doi: 10.16196/j.cnki.issn.1673-4793.2023.04.007. [9] POZAR D M and SCHAUBERT D H. Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays[M]. New York: John Wiley & Sons, Inc. , 1995. [10] 丁卫平, 李洪彬, 余同彬, 等. 一种紧凑结构的宽频带圆极化微带天线[J]. 解放军理工大学学报(自然科学版), 2011, 12(6): 559–563. doi: 10.3969/j.issn.1009-3443.2011.06.001.DING Weiping, LI Hongbin, YU Tongbin, et al. Broadband circularly polarized microstrip antenna with compact configuration[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2011, 12(6): 559–563. doi: 10.3969/j.issn.1009-3443.2011.06.001. [11] 闫鹏, 李阳, 李振海, 等. 一种可用于相控阵的双点馈多层圆极化微带天线[J]. 中国电子科学研究院学报, 2012, 7(1): 76–80. doi: 10.3969/j.issn.1673-5692.2012.01.015.YAN Peng, LI Yang, LI Zhenhai, et al. A dual-fed multi-layer circularly-polarized microstrip antenna for phased array[J]. Journal of China Academy of Electronics and Information Technology, 2012, 7(1): 76–80. doi: 10.3969/j.issn.1673-5692.2012.01.015. [12] 赵忠超, 郑会利, 孙超. 基于宽带移相器的GNSS圆极化微带天线[J]. 微波学报, 2016, 32(S1): 134–136.ZHAO Zhongchao, ZHENG Huili, and SUN Chao. A circularly polarized microstrip antenna using broadband phase shifter for GNSS application[J]. Journal of Microwaves, 2016, 32(S1): 134–136. [13] 王元源, 赵交成, 李超. LTCC多层阵列天线设计[C]. 2011年全国天线年会论文集(上册), 南京, 2011: 713–716. doi: 10.26914/c.cnkihy.2011.002340.WANG Yuanyuan, ZHAO Jiaocheng, and LI Chao. Design of wideband array of stacked antennas in LTCC[C]. The 2011 National Antenna Annual Conference, Nanjing, China, 2011: 713–716. doi: 10.26914/c.cnkihy.2011.002340. [14] 刘学观, 郭辉萍. 微波技术与天线[M]. 5版. 西安: 西安电子科技大学出版社, 2021: 119–120.LIU Xueguan and GUO Huiping. Microwave Technology and Antenna[M]. 5th ed. Xi’an: Xidian University Press, 2021: 119–120. [15] BIRWAL A, PATEL K, and SINGH S. Circular slot-based microstrip circularly polarized antenna for 2.45-GHz RFID reader applications[J]. IEEE Journal of Radio Frequency Identification, 2024, 8: 10–18. doi: 10.1109/JRFID.2024.3354515. [16] SUN Luyang. A novel method of broadening bandwidth for compact single-fed circularly polarized microstrip antenna[C]. 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Beijing, China, 2016: 623–625. doi: 10.1109/ICMMT.2016.7762388. [17] ZAID J, FARAHANI M, and DENIDNI T A. A CP-GPS antenna using low temperature cofired ceramic technology[C]. Proceedings of 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, USA, 2016: 121–122. doi: 10.1109/APS.2016.7695769. [18] AHN S H, CHOI Y S, ELHEFNAWY M, et al. Multi-polarized reconfigurable antenna with ground plane slot and capacitance feeding for UAV-to-everything communications[J]. Applied Computational Electromagnetics Society Journal, 2023, 38(12): 998–1004. doi: 10.13052/2023.ACES.J.381210. [19] 严冬, 杜培勋, 王平, 等. 2.4 GHz宽带圆极化微带天线的研究与实现[J]. 电波科学学报, 2019, 34(3): 380–389. doi: 10.13443/j.cjors.2018072001.YAN Dong, DU Peixun, WANG Ping, et al. Research and realization of 2.4 GHz wideband circularly polarized microstrip antennas[J]. Chinese Journal of Radio Science, 2019, 34(3): 380–389. doi: 10.13443/j.cjors.2018072001. -