高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柔性演员-评论家的通感算融合网络稳健资源优化

李斌 沈立 赵传信 费泽松

李斌, 沈立, 赵传信, 费泽松. 基于柔性演员-评论家的通感算融合网络稳健资源优化[J]. 电子与信息学报. doi: 10.11999/JEIT240716
引用本文: 李斌, 沈立, 赵传信, 费泽松. 基于柔性演员-评论家的通感算融合网络稳健资源优化[J]. 电子与信息学报. doi: 10.11999/JEIT240716
LI Bin, SHEN Li, ZHAO Chuanxin, FEI Zesong. Robust Resource Optimization in Integrated Sensing, Communication, and Computing Networks Based on Soft Actor-Critic[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240716
Citation: LI Bin, SHEN Li, ZHAO Chuanxin, FEI Zesong. Robust Resource Optimization in Integrated Sensing, Communication, and Computing Networks Based on Soft Actor-Critic[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240716

基于柔性演员-评论家的通感算融合网络稳健资源优化

doi: 10.11999/JEIT240716
基金项目: 国家重点研发计划(2021YFB2900200),国家自然科学基金(62101277)
详细信息
    作者简介:

    李斌:男,副教授,研究方向为移动边缘计算、无人机通信网络

    沈立:男,硕士生,研究方向为通感算融合

    赵传信:男,教授,研究方向为物联网、智能信息处理

    费泽松:男,教授,研究方向为通感算一体化、多媒体信号处理

    通讯作者:

    赵传信 zhaocx@ahnu.edu.cn

  • 中图分类号: TN929.5

Robust Resource Optimization in Integrated Sensing, Communication, and Computing Networks Based on Soft Actor-Critic

Funds: The National Key R&D Program of China (2021YFB2900200), The National Natural Science Foundation of China (62101277)
  • 摘要: 通感算融合是6G的热点研究方向。为了解决复杂场景下通信-感知-计算模式的用户能耗大、计算不确定等问题,该文设计一种稳健的通感算融合网络资源分配与决策优化方案。首先,由于任务复杂度的不可预测,构建一个稳健的计算资源分配问题以优化卸载决策的不确定性。其次,在满足用户功耗、处理时间、雷达估计信息率等条件下,联合优化任务卸载比例、波束赋形和资源分配,建立用户总能耗最小化问题。由于该优化问题是多变量耦合且非凸的,将其建模为一个马尔可夫决策过程,提出一种基于柔性演员-评论家(SAC)优化算法。仿真结果表明,该算法在网络训练时更加稳定,能有效增强计算稳健性,与近端策略优化算法和优势动作评论算法相比,所提SAC算法在用户能耗方面分别减少了9.57%和40.72%。此外,用户数越多,能耗减少越显著。
  • 图  1  系统模型

    图  2  SAC算法训练架构

    图  3  SAC算法不同学习率收敛情况

    图  4  不同算法性能对比

    图  5  稳健和非稳健设计比较

    图  6  不同用户数量各算法能耗比较

    图  7  不同任务复杂度估计误差界限的能耗比较

    图  8  不同最小任务量和带宽的能耗比较

    图  9  不同最大任务量和带宽的能耗比较

    1  基于SAC的资源优化算法

     步骤1 初始化$ \phi $, $ {\xi } $, 经验池
     步骤2 对每个训练周期执行:
     步骤3   初始化用户坐标$ ({x_k}{\text{,}}{y_k}{\text{)}} $和任务类型z
     步骤4   对每个环境交互步骤执行:
     步骤5      获取当前环境状态$ {{s}_{n}} $
     步骤6      根据当前策略$ {{\pi }^*} $选择动作$ {{a}_{n}} $
     步骤7      执行动作$ {{a}_{n}} $
     步骤8      获取下一环境状态$ {{s}_{{n}{\text{+1}}}} $
     步骤9      计算回报$ {{r}_n} $
     步骤10      将经验元组$ {\text{(}}{{s}_{n}}{\text{,}}{{a}_{n}}{\text{,}}{{r}_n}{\text{,}}{{s}_{{n}{\text{+1}}}}{\text{)}} $存入经验池中
     步骤11   对每个梯度更新步骤执行:
     步骤12      从经验池随机采样小批次样本
     步骤13      计算损失函数$ {{L}_{\pi }}{\text{(}}{\phi }{\text{)}} $, $ {{L}_{Q}}{\text{(}}{{\xi }_{i}}{\text{)}} $和$ {L}{\text{(}}{\chi }{\text{)}} $
     步骤14      更新参数$ \phi $, $ {{\xi }_{i}} $, $ {\xi }'_{i} $和$ {\chi } $
    下载: 导出CSV

    表  1  参数设置

    参数 数值
    时隙$ {\delta _n} $(s) $ 1.0 $
    最小雷达估计信息率$ R_{{\text{rad}}}^{\min } $(dB) $ {10^3} $
    用户最大发射功率$ P_k^{\max } $(W) $ {\text{0}}{\text{.5}} $
    用户最大计算频率$ {f}_k^{{\text{max}}} $(GHz) $ {\text{1}}{\text{.0}} $
    BS最大计算频率$ {f}_{{\text{ec}}}^{{\text{max}}} $(GHz) $ {\text{20}}{\text{.0}} $
    带宽B (MHz) $ {\text{20}} $
    雷达脉冲时长$ {\mu } $(s) $ {\text{2}} \times {\text{1}}{{\text{0}}^{{{ - 5}}}} $
    CPU有效电容系数$ {\varepsilon } $ $ {\text{1}}{{\text{0}}^{{{ - 27}}}} $
    雷达波形功率谱密度常数$ \eta $ $ \pi {\text{/}}\sqrt {\text{3}} $
    雷达占空因子$ {\nu } $ $ {\text{0}}{\text{.01}} $
    误差界限预定阈值$ {\varepsilon _z} $ $ {\text{55}} $
    下载: 导出CSV
  • [1] TAN D K P, HE Jia, LI Yanchun, et al. Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions[C]. 1st IEEE International Online Symposium on Joint Communications & Sensing, Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376324.
    [2] CHENG Xiang, DUAN Dongliang, GAO Shijian, et al. Integrated sensing and communications (ISAC) for vehicular communication networks (VCN)[J]. IEEE Internet of Things Journal, 2022, 9(23): 23441–23451. doi: 10.1109/JIOT.2022.3191386.
    [3] 袁培燕, 邵赛珂, 魏然, 等. 基于时延和能耗约束的感知数据协作卸载策略研究[J]. 物联网学报, 2023, 7(1): 109–117. doi: 10.11959/j.issn.2096-3750.2023.00324.

    YUAN Peiyan, SHAO Saike, WEI Ran, et al. Research on the cooperative offloading strategy of sensory data based on delay and energy constraints[J]. Chinese Journal on Internet of Things, 2023, 7(1): 109–117. doi: 10.11959/j.issn.2096-3750.2023.00324.
    [4] 鲜永菊, 韩瑞寅, 左维昊, 等. 移动性感知下基于负载均衡的任务迁移方案[J]. 电讯技术, 2024, 64(3): 333–342. doi: 10.20079/j.issn.1001-893x.221121002.

    XIAN Yongju, HAN Ruiyin, ZUO Weihao, et al. A task migration scheme based on load balancing under mobility aware[J]. Telecommunication Engineering, 2024, 64(3): 333–342. doi: 10.20079/j.issn.1001-893x.221121002.
    [5] WANG Zhaolin, MU Xidong, LIU Yuanwei, et al. NOMA-aided joint communication, sensing, and multi-tier computing systems[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(3): 574–588. doi: 10.1109/JSAC.2022.3229447.
    [6] ZHANG Wenqian, ZHANG Guanglin, and MAO Shiwen. Joint parallel offloading and load balancing for cooperative-MEC systems with delay constraints[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4249–4263. doi: 10.1109/TVT.2022.3143425.
    [7] XU Yu, ZHANG Tiankui, LOO J, et al. Completion time minimization for UAV-assisted mobile-edge computing systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 12253–12259. doi: 10.1109/TVT.2021.3112853.
    [8] JEONG S, SIMEONE O, and KANG J. Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2049–2063. doi: 10.1109/TVT.2017.2706308.
    [9] CHEN Yi, CHANG Zheng, MIN Geyong, et al. Joint optimization of sensing and computation for status update in mobile edge computing systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8230–8243. doi: 10.1109/TWC.2023.3261338.
    [10] ZHANG Liang and ANSARI N. Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks[J]. IEEE Internet of Things Journal, 2020, 7(10): 10573–10580. doi: 10.1109/JIOT.2020.3005117.
    [11] HEIDARPOUR A R, HEIDARPOUR M R, ARDAKANI M, et al. Soft actor–critic-based computation offloading in multiuser MEC-enabled IoT—A lifetime maximization perspective[J]. IEEE Internet of Things Journal, 2023, 10(20): 17571–17584. doi: 10.1109/JIOT.2023.3277753.
    [12] ZHAO Lindong, WU Dan, ZHOU Liang, et al. Radio resource allocation for integrated sensing, communication, and computation networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8675–8687. doi: 10.1109/TWC.2022.3168348.
    [13] HE Yinghui, YU Guanding, CAI Yunlong, et al. Integrated sensing, computation, and communication: System framework and performance optimization[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1114–1128. doi: 10.1109/TWC.2023.3285869.
    [14] TANG Ming and WONG V W S. Deep reinforcement learning for task offloading in mobile edge computing systems[J]. IEEE Transactions on Mobile Computing, 2022, 21(6): 1985–1997. doi: 10.1109/TMC.2020.3036871.
    [15] 任之初, 靳亚盛, 潘存华. STAR-RIS辅助通感算一体化系统波束成形设计[J]. 移动通信, 2024, 48(4): 66–72. doi: 10.3969/j.issn.1006-1010.20240227-0001.

    REN Zhichu, JIN Yasheng, and PAN Cunhua. Beamforming design of STAR-RIS-assisted integrated sensing, communication and computation system[J]. Mobile Communications, 2024, 48(4): 66–72. doi: 10.3969/j.issn.1006-1010.20240227-0001.
    [16] ESHRAGHI N and LIANG Ben. Joint offloading decision and resource allocation with uncertain task computing requirement[C]. IEEE Conference on Computer Communications, Paris, France, 2019: 1414–1422. doi: 10.1109/INFOCOM.2019.8737559.
    [17] SAMIR M, SHARAFEDDINE S, ASSI C M, et al. UAV trajectory planning for data collection from time-constrained IoT devices[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 34–46. doi: 10.1109/TWC.2019.2940447.
    [18] QI Qiao, CHEN Xiaoming, KHALILI A, et al. Integrating sensing, computing, and communication in 6G wireless networks: Design and optimization[J]. IEEE Transactions on Communications, 2022, 70(9): 6212–6227. doi: 10.1109/TCOMM.2022.3190363.
    [19] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv preprint, arXiv: 1707.06347, 2017. doi: 10.48550/arXiv.1707.06347.
    [20] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]. Proceedings of the 33rd International Conference on Machine Learning, New York, USA, 2016: 1928–1937.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  18
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-16
  • 修回日期:  2025-01-22
  • 网络出版日期:  2025-02-09

目录

    /

    返回文章
    返回