高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模型与数据双驱动的联合有限角CT重建与金属伪影校正方法

石保顺 程诗展 姜轲 傅昭然

石保顺, 程诗展, 姜轲, 傅昭然. 模型与数据双驱动的联合有限角CT重建与金属伪影校正方法[J]. 电子与信息学报. doi: 10.11999/JEIT240703
引用本文: 石保顺, 程诗展, 姜轲, 傅昭然. 模型与数据双驱动的联合有限角CT重建与金属伪影校正方法[J]. 电子与信息学报. doi: 10.11999/JEIT240703
SHI Baoshun, CHENG Shizhan, JIANG Ke, FU Zhaoran. Model and Data Dual-driven Joint Limited-Angle CT Reconstruction and Metal Artifact Reduction Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240703
Citation: SHI Baoshun, CHENG Shizhan, JIANG Ke, FU Zhaoran. Model and Data Dual-driven Joint Limited-Angle CT Reconstruction and Metal Artifact Reduction Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240703

模型与数据双驱动的联合有限角CT重建与金属伪影校正方法

doi: 10.11999/JEIT240703
基金项目: 国家自然科学基金(62371414),河北省自然科学基金(F2023203043),河北省重点实验室资助课题(202250701010046)
详细信息
    作者简介:

    石保顺:男,副教授,研究方向为医学图像处理、深度字典网络、计算机视觉

    程诗展:男,硕士生,研究方向为有限角度CT重建、医学图像处理

    姜轲:女,博士生,研究方向为少角度CT图像重建、深度字典网络

    傅昭然:女,主任医师,研究方向为金属伪影校正、医学图像处理

    通讯作者:

    石保顺 shibaoshun@ysu.edu.cn

  • 中图分类号: TN911.73; TP391

Model and Data Dual-driven Joint Limited-Angle CT Reconstruction and Metal Artifact Reduction Method

Funds: The National Natural Science Foundation of China (62371414), The Natural Science Foundation of Hebei Province (F2023203043), The Key Laboratory of Hebei Province Funding Project (202250701010046)
  • 摘要: 有限角度计算机断层扫描(LACT)旨在通过减少扫描角度的范围来减少辐射剂量。由于投影数据是不完备的且未考虑联合有限角度和金属伪影校正(LAMAR)任务,传统方法重建的CT图像往往存在伪影,特别是当患者携带金属植入物时,伪影将进一步加重,影响后期医疗诊断及下游任务的精度。为解决这一问题,该文利用双域知识和深度展开技术,融合Transformer的非局部特性捕获能力和卷积神经网络(CNN)的局部特征提取能力,提出了能够联合解决LAMAR和LACT任务的模型与数据双驱动双域重建网络,记为MD3Net。该文首先构建了双域优化模型,使用邻近梯度下降算法对优化模型进行求解,并将其展开成模型驱动的CT重建网络。其次,设计了任务选择(TS)模块,通过判断初始估计CT图像中有无金属以利用同一模型同时处理有金属和无金属的重建任务。在数据驱动网络中,构建了融合Transformer和CNN的双分支的迹感知投影域邻近子网络和结合通道注意力、空间注意力的图像域邻近子网络,进而提升网络表示能力。实验结果表明,与现有方法相比,所提算法在联合LACT和LAMAR任务上重建效果更好。
  • 图  1  不同情况下重建图像的对比

    图  2  MD3Net网络架构图

    图  3  预处理模块

    图  4  不同方法在不同有限角度下LACT重建任务的重建结果

    图  5  不同方法在不同有限角度下LAMAR任务的重建结果

    图  6  SpineWeb真实数据集LAMAR重建结果的视觉比较

    表  1  使用PSNR(dB), SSIM和RMSE对3种有限角度设置下的LACT及LAMAR任务进行定量比较

    方法 $ [0,{90^ \circ }] $ $ [0,{120^ \circ }] $ $ [0,{150^ \circ }] $
    LACT LAMAR Average LACT LAMAR Average LACT LAMAR Average
    FBP[2] 17.27
    0.5317
    0.0688
    14.82
    0.3739
    0.0927
    16.05
    0.4528
    0.0808
    19.51
    0.5881
    0.0532
    17.16
    0.3448
    0.0709
    18.34
    0.4665
    0.0621
    22.97
    0.6453
    0.0358
    19.68
    0.2939
    0.0533
    21.33
    0.4969
    0.0446
    FBPConvNet[16] 25.64
    0.8431
    0.0268
    29.11
    0.7877
    0.0180
    27.38
    0.8154
    0.0224
    27.11
    0.8822
    0.0231
    32.50
    0.8575
    0.0121
    29.81
    0.8699
    0.0176
    32.59
    0.9141
    0.0126
    34.94
    0.9224
    0.0093
    33.77
    0.9183
    0.0110
    DDNet[17] 26.29
    0.7397
    0.0247
    29.33
    0.8688
    0.0174
    27.81
    0.8043
    0.0211
    29.42
    0.8301
    0.0175
    31.13
    0.8745
    0.0141
    30.28
    0.8523
    0.0158
    34.23
    0.8878
    0.0101
    33.28
    0.9131
    0.0111
    33.76
    0.9005
    0.0106
    EPNet[10] 27.85
    0.8359
    0.0211
    28.63
    0.8368
    0.0189
    28.24
    0.8364
    0.0200
    29.59
    0.8818
    0.0172
    30.14
    0.8635
    0.0160
    29.87
    0.8727
    0.0166
    34.31
    0.9312
    0.0105
    33.43
    0.9156
    0.0111
    33.87
    0.9234
    0.0108
    DuDoTrans[8] 26.65
    0.8542
    0.0236
    25.48
    0.7717
    0.0272
    26.07
    0.8130
    0.0254
    29.09
    0.8896
    0.0181
    28.17
    0.8492
    0.0199
    28.63
    0.8694
    0.0190
    32.83
    0.9268
    0.0119
    31.34
    0.8866
    0.0139
    32.09
    0.9067
    0.0129
    FreeSeed[5] 26.05
    0.8606
    0.0254
    29.55
    0.8051
    0.0170
    27.80
    0.8329
    0.0212
    28.58
    0.8861
    0.0192
    32.03
    0.8674
    0.0128
    30.31
    0.8768
    0.0160
    33.78
    0.9284
    0.0108
    34.88
    0.9044
    0.0092
    34.33
    0.9164
    0.0100
    MD3Net 30.39
    0.9142
    0.0162
    31.45
    0.8404
    0.0139
    30.92
    0.8773
    0.0151
    32.25
    0.9309
    0.0137
    34.12
    0.8625
    0.0100
    33.19
    0.8967
    0.0119
    35.20
    0.9507
    0.0099
    38.09
    0.8934
    0.0064
    36.65
    0.9221
    0.0082
    下载: 导出CSV

    表  2  本文方法各个模块3个角度下对联合LACT和LAMAR任务的平均PSNR(dB)/SSIM

    方法X-NetS-NetS-Net w/o LX-Net w/o A$ [0,{90^ \circ }] $$ [0,{120^ \circ }] $$ [0,{150^ \circ }] $Average
    PSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIM
    M1×××30.78/0.869832.83/0.866835.56/0.918333.09/0.8850
    M2×××26.67/0.673727.95/0.693430.18/0.761628.27/0.7096
    M3××30.66/0.872132.97/0.892736.26/0.912033.30/0.8923
    M4××30.83/0.863933.11/0.887836.49/0.917133.48/0.8896
    M5××30.92/0.877333.19/0.896736.65/0.922133.59/0.8987
    下载: 导出CSV

    表  3  MD3Net关于阈值h的性能分析

    阈值h LACT LAMAR Average
    PSNR(dB)/
    SSIM
    PSNR(dB)/
    SSIM
    PSNR(dB)/
    SSIM
    1 30.70/0.9133 30.64/0.7999 30.67/0.8566
    1.5 30.39/0.9142 31.45/0.8404 30.92/0.8773
    2 30.67/0.9124 30.99/0.7894 30.83/0.8509
    1.5(可学习的) 30.87/0.9115 30.93/0.8111 30.90/0.8613
    下载: 导出CSV
  • [1] DE BASEA M B, THIERRY-CHEF I, HARBRON R, et al. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults[J]. Nature Medicine, 2023, 29(12): 3111–3119. doi: 10.1038/s41591-023-02620-0.
    [2] PAN Xiaochuan, SIDKY E Y, and VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2009, 25(12): 123009. doi: 10.1088/0266-5611/25/12/123009.
    [3] YOO S, YANG Xiaogang, WOLFMAN M, et al. Sinogram image completion for limited angle tomography with generative adversarial networks[C]. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 1252–1256. doi: 10.1109/ICIP.2019.8804416.
    [4] ZHANG Yanbo and YU Hengyong. Convolutional neural network based metal artifact reduction in x-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1370–1381. doi: 10.1109/TMI.2018.2823083.
    [5] MA Chenglong, LI Zilong, ZHANG Junping, et al. FreeSeed: Frequency-band-aware and self-guided network for sparse-view CT reconstruction[C]. 26th International Conference on Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada, 2023: 250–259. doi: 10.1007/978-3-031-43999-5_24.
    [6] SHI Baoshun, ZHANG Shaolei, and FU Zhaoran. Artifact region-aware transformer: Global context helps CT metal artifact reduction[J]. IEEE Signal Processing Letters, 2024, 31: 1249–1253. doi: 10.1109/LSP.2024.3393355.
    [7] 于佳弘, 张昆鹏, 靳爽, 等. 弦图插值结合UNIT网络图像转换的CT金属伪影校正[J]. 南方医科大学学报, 2023, 43(7): 1214–1223. doi: 10.12122/j.issn.1673-4254.2023.07.18.

    YU Jiahong, ZHANG Kunpeng, JIN Shuang, et al. Sinogram interpolation combined with unsupervised image-to-image translation network for CT metal artifact correction[J]. Journal of Southern Medical University, 2023, 43(7): 1214–1223. doi: 10.12122/j.issn.1673-4254.2023.07.18.
    [8] WANG Ce, SHANG Kun, ZHANG Haimiao, et al. DuDoTrans: Dual-domain transformer for sparse-view CT reconstruction[C]. 5th International Workshop on Machine Learning for Medical Image Reconstruction, Singapore, 2022: 84–94. doi: 10.1007/978-3-031-17247-2_9.
    [9] LIN Weian, LIAO Haofu, PENG Cheng, et al. DuDoNet: Dual domain network for CT metal artifact reduction[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 10504–10513. doi: 10.1109/CVPR.2019.01076.
    [10] WANG Ce, ZHANG Haimiao, LI Qian, et al. Improving generalizability in limited-angle CT reconstruction with sinogram extrapolation[C]. 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, France, 2021: 86–96. doi: 10.1007/978-3-030-87231-1_9.
    [11] WAGN Hong, LI Yuexiang, MENG Deyu, et al. Adaptive convolutional dictionary network for CT metal artifact reduction[C]. Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 1401–1407. doi: 10.24963/ijcai.2022/195.
    [12] 袁伟, 席雅睿, 谭川东, 等. 基于Swin-Transformer迭代展开的有限角CT图像重建用于PTCT成像[J]. 光学学报, 2024, 44(8): 0834001. doi: 10.3788/AOS231823.

    YUAN Wei, XI Yarui, TAN Chuandong, et al. Limited-angle CT image reconstruction based on Swin-Transformer iterative unfolding for PTCT imaging[J]. Acta Optica Sinica, 2024, 44(8): 0834001. doi: 10.3788/AOS231823.
    [13] 赵云松, 李宏伟, 张朋. 有限角CT成像研究进展[J]. 中国体视学与图像分析, 2022, 27(4): 436–446. doi: 10.13505/j.1007-1482.2022.27.04.010.

    ZHAO Yunsong, LI Hongwei, and ZHANG Peng. Development of limited-angle CT imaging[J]. Chinese Journal of Stereology and Image Analysis, 2022, 27(4): 436–446. doi: 10.13505/j.1007-1482.2022.27.04.010.
    [14] YAZDANPANAH A P and REGENTOVA E E. Sparse-view CT reconstruction using curvelet and TV-based regularization[C]. 13th International Conference on Image Analysis and Recognition, Póvoa de Varzim, Portugal, 2016: 672–677. doi: 10.1007/978-3-319-41501-7_75.
    [15] XU Moran, HU Dianlin, LUO Fulin, et al. Limited-angle X-ray CT reconstruction using image gradient l0-norm with dictionary learning[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(1): 78–87. doi: 10.1109/TRPMS.2020.2991887.
    [16] JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509–4522. doi: 10.1109/TIP.2017.2713099.
    [17] ZHANG Zhicheng, LIANG Xiaokun, DONG Xu, et al. A sparse-view CT reconstruction method based on combination of DenseNet and deconvolution[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1407–1417. doi: 10.1109/TMI.2018.2823338.
    [18] GAO Yuan, ZHANG Liu, YU Wenxue, et al. Cas-PRED: A limited-angle cone beam CT reconstruction research based on prior information[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 4504117. doi: 10.1109/TIM.2023.3335513.
    [19] HU Dianlin, ZHANG Yikun, QUAN Guotao, et al. CROSS: Cross-domain residual-optimization-based structure strengthening reconstruction for limited-angle CT[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2023, 7(5): 521–531. doi: 10.1109/TRPMS.2023.3242662.
    [20] CHENG Weiting, HE Jichun, LIU Yi, et al. CAIR: Combining integrated attention with iterative optimization learning for sparse-view CT reconstruction[J]. Computers in Biology and Medicine, 2023, 163: 107161. doi: 10.1016/j.compbiomed.2023.107161.
    [21] VERBURG J M and SECO J. CT metal artifact reduction method correcting for beam hardening and missing projections[J]. Physics in Medicine & Biology, 2012, 57(9): 2803–2818. doi: 10.1088/0031-9155/57/9/2803.
    [22] KALENDER W A, HEBEL R, and EBERSBERGER J. Reduction of CT artifacts caused by metallic implants[J]. Radiology, 1987, 164(2): 576–577. doi: 10.1148/radiology.164.2.3602406.
    [23] MEYER E, RAUPACH R, LELL M, et al. Normalized metal artifact reduction (NMAR) in computed tomography[J]. Medical Physics, 2010, 37(10): 5482–5493. doi: 10.1118/1.3484090.
    [24] ZHANG Haimiao, DONG Bin, and LIU Baodong. A reweighted joint spatial-radon domain CT image reconstruction model for metal artifact reduction[J]. SIAM Journal on Imaging Sciences, 2018, 11(1): 707–733. doi: 10.1137/17M1140212.
    [25] WANG Hong, LI Yuexiang, ZHANG Haimiao, et al. InDuDoNet: An interpretable dual domain network for CT metal artifact reduction[C]. 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, France, 2021: 107–118. doi: 10.1007/978-3-030-87231-1_11.
    [26] WANG Hong, LI Yuexiang, ZHANG Haimiao, et al. InDuDoNet+: A deep unfolding dual domain network for metal artifact reduction in CT images[J]. Medical Image Analysis, 2023, 85: 102729. doi: 10.1016/j.media.2022.102729.
    [27] SHI Baoshun, JIANG Ke, ZHANG Shaolei, et al. Mud-Net: Multi-domain deep unrolling network for simultaneous sparse-view and metal artifact reduction in computed tomography[J]. Machine Learning: Science and Technology, 2024, 5(1): 015010. doi: 10.1088/2632-2153/ad1b8e.
    [28] SHI Baoshun, ZHANG Shaolei, JIANG Ke, et al. Coupling model-and data-driven networks for CT metal artifact reduction[J]. IEEE Transactions on Computational Imaging, 2024, 10: 415–428. doi: 10.1109/TCI.2024.3369408.
    [29] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [30] LIU Xiangbin, LIU Ying, FU Weina, et al. RETRACTED ARTICLE: SCTV-UNet: A COVID-19 CT segmentation network based on attention mechanism[J]. Soft Computing, 2024, 28(2): 473. doi: 10.1007/s00500-023-07991-7.
    [31] MCCOLLOUGH C. TU-FG-207A-04: Overview of the low dose CT grand challenge[J]. Medical Physics, 2016, 43(6Part35): 3759–3760. doi: 10.1118/1.4957556.
    [32] YAN Ke, WANG Xiaosong, LU Le, et al. Deep lesion graphs in the wild: Relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9261–9270. doi: 10.1109/CVPR.2018.00965.
    [33] GLOCKER B, ZIKIC D, KONUKOGLU E, et al. Vertebrae localization in pathological spine CT via dense classification from sparse annotations[C]. 16th International Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 2013: 262–270. doi: 10.1007/978-3-642-40763-5_33.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  21
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2025-04-14
  • 网络出版日期:  2025-05-09

目录

    /

    返回文章
    返回