高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向大尺度战场的信道仿真加速算法

刘畅 李维实 徐强 时成哲 邵士海

刘畅, 李维实, 徐强, 时成哲, 邵士海. 面向大尺度战场的信道仿真加速算法[J]. 电子与信息学报. doi: 10.11999/JEIT240655
引用本文: 刘畅, 李维实, 徐强, 时成哲, 邵士海. 面向大尺度战场的信道仿真加速算法[J]. 电子与信息学报. doi: 10.11999/JEIT240655
LIU Chang, LI Weishi, XU Qiang, SHI Chengzhe, SHAO Shihai. Accelerated Channel Simulation Algorithm for Large-Scale Battlefield[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240655
Citation: LIU Chang, LI Weishi, XU Qiang, SHI Chengzhe, SHAO Shihai. Accelerated Channel Simulation Algorithm for Large-Scale Battlefield[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240655

面向大尺度战场的信道仿真加速算法

doi: 10.11999/JEIT240655
基金项目: 国家重点研发计划(2023YFF0717700)
详细信息
    作者简介:

    刘畅:男,博士生,研究方向为无线通信信号处理、无线信道建模等

    李维实:男,博士生,研究方向为射频电路系统、无线信道建模等

    徐强:男,副研究员,研究方向为无线通信信号处理、太赫兹通信技术等

    时成哲:男,博士生,研究方向为通信抗干扰技术、相控阵天线技术等

    邵士海:男,教授,博士生导师,研究方向为无线通信信号处理、抗干扰与安全通信等

    通讯作者:

    徐强 xuqiang06@uestc.edu.cn

  • 中图分类号: TN92

Accelerated Channel Simulation Algorithm for Large-Scale Battlefield

Funds: The National Key Research and Development Program of China (2023YFF0717700)
  • 摘要: 大尺度战场环境中电磁频谱作战装备测试和演训需要依靠大规模数字化电磁环境进行仿真,然而大尺度电磁信道计算复杂度较高,难以提升计算速度。针对这一问题,该文提出一种迭代时域辐射度算法。该算法通过递推方法建模信道,利用空间相干性复用前一时刻的信道数据,并经过修正后用于当前时刻的信道计算。同时,采用面元信道搜索方法对面元中的信道进行低复杂度近似,有效降低了计算复杂度。仿真结果表明,与传统时域辐射度算法相比,所提算法在保证计算精度的基础上计算速度提升了1个数量级。与频域辐射度算法相比,所提算法的时延分辨率更高,更适用于大规模战场环境。
  • 图  1  收发机与场景面元间的反射信道

    图  2  信道修正示意图

    图  3  修正迭代时域辐射度算法的计算偏差

    图  4  迭代时域辐射度算法系统框图

    图  5  战场仿真场景三角网络模型

    图  6  面元反射信道强度占比随着信道缓存长度的变化

    图  7  迭代辐射度算法面元中信道归一化衰减强度

    图  8  3种方法信道衰减和时延

    图  9  3种算法计算复杂度随面元数的变化

    图  10  3种算法计算时间随面元数的变化

    表  1  算法的计算复杂度

    算法名称计算复杂度
    传统时域辐射度算法$O({N^m})$
    频域辐射度算法$O({N^2} \cdot {P_{{\text{FFT}}}})$
    迭代时域辐射度算法$ O\left( {{N^2} \cdot L \cdot \left( {{{\log }_2}\left( {L - 1} \right){\text{ + 1}}} \right)} \right) $
    下载: 导出CSV
  • [1] TESTOLINA P, POLESE M, JOHARI P, et al. Boston twin: The Boston digital twin for ray-tracing in 6G networks[C]. Proceedings of the 15th ACM Multimedia Systems Conference, Bari, Italy, 2024: 441–447. doi: 10.1145/3625468.3652190.
    [2] BAUMGÄRTNER L, BAUER M, and BLOESSL B. SUN: A simulated UAV network testbed with hardware-in-the-loop SDR support[C]. 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10119014.
    [3] VILLA D, TEHRANI-MOAYYED M, ROBINSON C P, et al. Colosseum as a digital twin: Bridging real-world experimentation and wireless network emulation[J]. IEEE Transactions on Mobile Computing, 2024, 23(10): 9150–9166. doi: 10.1109/TMC.2024.3359596.
    [4] RUSCA R, RAVIGLIONE F, CASETTI C, et al. Mobile RF scenario design for massive-scale wireless channel emulators[C]. 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 2023: 675–680. doi: 10.1109/EuCNC/6GSummit58263.2023.10188319.
    [5] MOHANTI S, BOCANEGRA C, SANCHEZ S G, et al. SABRE: Swarm-based aerial beamforming radios: Experimentation and emulation[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7460–7475. doi: 10.1109/TWC.2022.3158866.
    [6] MUKHERJEE M, RAHMAN N M, DELUDE C, et al. A high performance computing architecture for real-time digital emulation of RF interactions[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149577.
    [7] ERUNKULU O O, ZUNGERU A M, LEBEKWE C K, et al. Cellular communications coverage prediction techniques: A survey and comparison[J]. IEEE Access, 2020, 8: 113052–113077. doi: 10.1109/ACCESS.2020.3003247.
    [8] KLOCH C, LIANG G, ANDERSEN J B, et al. Comparison of measured and predicted time dispersion and direction of arrival for multipath in a small cell environment[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(9): 1254–1263. doi: 10.1109/8.947016.
    [9] MONTIEL E, AGUADO A S, and SILLION F X. A radiance model for predicting radio wave propagation in irregular dense urban areas[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(11): 3097–3108. doi: 10.1109/TAP.2003.818781.
    [10] DU Kai, HUANG Huaguo, ZHU Yuyi, et al. Simulation of Ku-band profile radar waveform by extending radiosity applicable to porous individual objects (RAPID2) model[J]. Remote Sensing, 2020, 12(4): 684. doi: 10.3390/rs12040684.
    [11] ALQUDAH Y A and KAVEHRAD M. MIMO characterization of indoor wireless optical link using a diffuse-transmission configuration[J]. IEEE Transactions on Communications, 2003, 51(9): 1554–1560. doi: 10.1109/TCOMM.2003.816945.
    [12] FARAHNEH H, KHALIFEH A, and FERNANDO X. An outdoor multi path channel model for vehicular visible light communication systems[C]. 2016 Photonics North (PN), Quebec City, Canada, 2016: 675–680. doi: 10.1109/PN.2016.7537911.
    [13] AYADI M, TORJEMEN N, and TABBANE S. Two-dimensional deterministic propagation models approach and comparison with calibrated empirical models[J]. IEEE Transactions on Wireless Communications, 2015, 14(10): 5714–5722. doi: 10.1109/TWC.2015.2442572.
    [14] SCHULZE H. Frequency-domain simulation of the indoor wireless optical communication channel[J]. IEEE Transactions on Communications, 2016, 64(6): 2551–2562. doi: 10.1109/TCOMM.2016.2556684.
    [15] SCHULZE H, MIETZNER J, and HOEHER P A. Dispersive optical wireless indoor channels–from frequency-domain modeling to bit-error-rate prediction[J]. IEEE Photonics Journal, 2024, 16(1): 7300713. doi: 10.1109/JPHOT.2024.3357169.
    [16] LIU Weirong, FEI Dan, GUAN Ke, et al. Channel measurements and modeling of wooded hilly terrain at sub-1 GHz band[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(4): 1301–1305. doi: 10.1109/LAWP.2024.3353736.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  11
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 修回日期:  2025-01-22
  • 网络出版日期:  2025-01-25

目录

    /

    返回文章
    返回