高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能表面辅助近场通信感知一体化系统基于嵌套张量的同时定位与通信方法

罗欣 杜建和 张耀 陈远知 关亚林

罗欣, 杜建和, 张耀, 陈远知, 关亚林. 可重构智能表面辅助近场通信感知一体化系统基于嵌套张量的同时定位与通信方法[J]. 电子与信息学报. doi: 10.11999/JEIT240566
引用本文: 罗欣, 杜建和, 张耀, 陈远知, 关亚林. 可重构智能表面辅助近场通信感知一体化系统基于嵌套张量的同时定位与通信方法[J]. 电子与信息学报. doi: 10.11999/JEIT240566
LUO Xin, DU Jianhe, ZHANG Yao, CHEN Yuanzhi, GUAN Yalin. Nested Tensor-based Simultaneous Localization and Communication Method for RIS-assisted Near-field Integrated Sensing And Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240566
Citation: LUO Xin, DU Jianhe, ZHANG Yao, CHEN Yuanzhi, GUAN Yalin. Nested Tensor-based Simultaneous Localization and Communication Method for RIS-assisted Near-field Integrated Sensing And Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240566

可重构智能表面辅助近场通信感知一体化系统基于嵌套张量的同时定位与通信方法

doi: 10.11999/JEIT240566
基金项目: 国家自然科学基金(62471444, U2441236)
详细信息
    作者简介:

    罗欣:女,博士,研究方向为通信感知一体化和张量信号处理

    杜建和:男,博士,教授,研究方向为信道估计、通信感知一体化和张量信号处理

    张耀:男,博士,助理研究员,研究方向为智能空间感知,定位和通信导航一体化

    陈远知:男,博士,教授,研究方向为无线通信和智能信号处理

    关亚林:男,博士,教授,研究方向为无线通信和广播技术

    通讯作者:

    杜建和 dujianhe1@163.com

  • 中图分类号: TN911.7

Nested Tensor-based Simultaneous Localization and Communication Method for RIS-assisted Near-field Integrated Sensing And Communication Systems

Funds: The National Natural Science Foundation of China (62471444, U2441236)
  • 摘要: 可重构智能表面(RIS)因其能够智能配置无线传输环境而成为增强通信和感知的革新技术。随着RIS孔径的增加,电磁场特性发生根本性变化,近场范围扩大。与远场通信和感知不同,近场通信和感知需要考虑更为复杂的信道结构特性,这使得RIS辅助的毫米波系统在近场通信和感知方面更具挑战。基于此,该文研究一种RIS辅助通信感知一体化(ISAC)的近场传输系统。首先,利用所考虑的ISAC场景的多维度资源和Khatri-Rao空时编码方法,将接收到的ISAC信号构造为4阶嵌套张量。然后,利用嵌套张量的代数结构和对近场信道模型的2阶菲涅耳近似,设计一种基于嵌套张量的同时定位和通信方案,在不发送专用导频的情况下实现近场环境散射点和用户定位以及信息符号检测。仿真结果表明,提出的方案具有较好的ISAC性能并优于现有方案。此外,即使是在高阶调制情况下,所提方案也有良好的定位精度和的误码率性能。
  • 图  1  RIS辅助的ISAC系统模型示意图

    图  2  不同算法的感知参数RMSE性能随SNR变化曲线性能比较

    图  3  不同算法的散射点和UE定位RMSE性能随SNR变化曲线性能比较

    图  4  不同算法的散射点和UE定位的3维可视化示意图

    图  5  不同调制方式下BER性能随SNR变化曲线

    图  6  不同调制方式下散射点和UE定位RMSE性能随SNR变化曲线

    图  7  不同仿真参数下散射点和UE定位RMSE性能随SNR变化曲线

    图  8  不同仿真参数下BER性能随SNR变化曲线

    1  基于嵌套张量的SLAC算法

     初始化:相移矩阵$ {{\boldsymbol{\varPhi}} _k} $,编码矩阵$ {\boldsymbol{C}} $,信道矩阵$ {{\boldsymbol{H}}_{{\text{BI,}}k}} $,接收信
     号$ {{\boldsymbol{Y}}_{k,p,q}} $
     (1)将接收信号$ {{\boldsymbol{Y}}_{k,p,q}} $构造成张量$ {\mathcal{Y}_{k,q}} $
     (2)借助张量$ {\mathcal{Y}_{k,q}} $,使用ALS算法求解$ {\hat {\boldsymbol{S}}_k} $和$ {\hat {\boldsymbol{H}}_k} $
     (3)将$ {\hat {\boldsymbol{H}}_k} $构造张量$ {\hat {\mathcal{H}}_k} $,通过伪逆计算未知信道矩阵$ {\hat {\boldsymbol{H}}_{{\text{IU,}}k}} $
     (4)将$ {\hat {\boldsymbol{H}}_{{\text{IU,}}k}} $构造张量$ {\hat {\mathcal{H}}_{{\text{IU}}}} $,使用ALS算法分解因子矩阵得到
     $ \left\{ {{{\hat {\boldsymbol{A}}}_{{\text{IT}}}},{{\hat {\boldsymbol{A}}}_{\text{U}}},\hat {\boldsymbol{B}}} \right\} $
     (5)使用MDL算法求解路径数目$ L $
     (6)通过下采样方法得到$ {\hat {\boldsymbol{A}}_{{\text{IT}}}} $和$ {\hat {\boldsymbol{A}}_{\text{U}}} $对应的协方差矩阵
     (7)使用ESPRIT算法和基于相关的算法估计信道参数
     $ \left\{ {{{\hat \phi }_{{\text{U}},l}},{{\hat \theta }_{{\text{U}},l}},{{\hat \phi }_{{\text{IT}},l}},{{\hat \theta }_{{\text{IT}},l}},{{\hat \tau }_l}} \right\}_{l = 1}^L $
     (8)使用已估计的信道参数进行定位得到$ {\hat {\boldsymbol{\rho}} _{\text{U}}} $和$ \left\{ {{{\hat{\boldsymbol{ \rho}} }_{{\text{R,}}l}}} \right\}_{l = 1}^L $
     输出:发送信息符号$ {\hat S_k} $,信道参数
     $ \left\{ {{{\hat \phi }_{{\text{U}},l}},{{\hat \theta }_{{\text{U}},l}},{{\hat \phi }_{{\text{IT}},l}},{{\hat \theta }_{{\text{IT}},l}},{{\hat \tau }_l}} \right\}_{l = 1}^L $,用户和散射点位置$ {\hat {\boldsymbol{\rho}} _{\text{U}}} $和
     $ \left\{ {{{\hat {\boldsymbol{\rho }}}_{{\text{R,}}l}}} \right\}_{l = 1}^L $
    下载: 导出CSV
  • [1] CHEN Shanzhi, SUN Shaohui, and KANG Shaoli. System integration of terrestrial mobile communication and satellite communication—the trends, challenges and key technologies in B5G and 6G[J]. China Communications, 2020, 17(12): 156–171. doi: 10.23919/JCC.2020.12.011.
    [2] CHEN Wanshi, LIN Xingqin, LEE J, et al. 5G-advanced toward 6G: Past, present, and future[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(6): 1592–1619. doi: 10.1109/JSAC.2023.3274037.
    [3] HAN Chong, WANG Yiqin, LI Yuanbo, et al. Terahertz wireless channels: A holistic survey on measurement, modeling, and analysis[J]. IEEE Communications Surveys & Tutorials, 2022, 24(3): 1670–1707. doi: 10.1109/COMST.2022.3182539.
    [4] 褚宏云, 杨梦瑶, 黄航, 等. 混合智能反射面辅助的通信感知一体化: 高能效波束成形设计[J]. 电子与信息学报, 2024, 46(6): 2462–2469. doi: 10.11999/JEIT230699.

    CHU Hongyun, YANG Mengyao, HUANG Hang, et al. Hybrid reconfigurable intelligent surface assisted integrated sensing and communication: Energy efficient beamforming design[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2462–2469. doi: 10.11999/JEIT230699.
    [5] HU Xiaoling, LIU Chenxi, PENG Mugen, et al. IRS-based integrated location sensing and communication for mmWave SIMO systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 4132–4145. doi: 10.1109/TWC.2022.3223428.
    [6] YANG Runruo, WANG Chengxiang, HUANG Jie, et al. A novel 6G ISAC channel model combining forward and backward scattering[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8050–8065. doi: 10.1109/TWC.2023.3258150.
    [7] PAN Yijin, PAN Cunhua, and JIN Shi. Localization in the near field of a RIS-assisted mmWave/subTHz system[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 3905–3910. doi: 10.1109/GLOBECOM48099.2022.10001107.
    [8] 李兴旺, 田志发, 张建华, 等. IRS辅助NOMA网络下隐蔽通信性能研究[J]. 中国科学: 信息科学, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.

    LI Xingwang, TIAN Zhifa, ZHANG Jianhua, et al. Performance analysis of covert communication in IRS-assisted NOMA networks[J]. SCIENTIA SINICA Informationis, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.
    [9] LIN Zhi, NIU Hehao, AN Kang, et al. Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3717–3724. doi: 10.1109/TAES.2022.3155711.
    [10] AN Kang, SUN Yifu, LIN Zhi, et al. Exploiting multi-layer refracting RIS-assisted receiver for HAP-SWIPT networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 12638–12657. doi: 10.1109/TWC.2024.3394214.
    [11] LIN Zhi, NIU Hehao, AN Kang, et al. Pain without gain: Destructive beamforming from a malicious RIS perspective in IoT networks[J]. IEEE Internet of Things Journal, 2024, 11(5): 7619–7629. doi: 10.1109/JIOT.2023.3316830.
    [12] XIONG Baiping, ZHANG Zaichen, JIANG Hao, et al. A 3D non-stationary MIMO channel model for reconfigurable intelligent surface auxiliary UAV-to-ground mmWave communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5658–5672. doi: 10.1109/TWC.2022.3142437.
    [13] DARDARI D, DECARLI N, GUERRA A, et al. LOS/NLOS near-field localization with a large reconfigurable intelligent surface[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 4282–4294. doi: 10.1109/TWC.2021.3128415.
    [14] SAVKIN A V, HUANG Chao, and NI Wei. Joint multi-UAV path planning and LoS communication for mobile-edge computing in IoT networks with RISs[J]. IEEE Internet of Things Journal, 2023, 10(3): 2720–2727. doi: 10.1109/JIOT.2022.3215255.
    [15] ZHU Qi, LI Ming, LIU Rang, et al. Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9636–9640. doi: 10.1109/TVT.2023.3249752.
    [16] LE Q N, NGUYEN V D, DOBRE O A, et al. RIS-assisted full-duplex integrated sensing and communication[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1677–1681. doi: 10.1109/LWC.2023.3285391.
    [17] LYU Wanting, YANG Songjie, XIU Yue, et al. CRB Minimization for RIS-aided mmWave integrated sensing and communications[J]. IEEE Internet of Things Journal, 2024, 11(10): 18381–18393. doi: 10.1109/JIOT.2024.3361939.
    [18] ALKHATEEB A, El AYACH O, LEUS G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 831–846. doi: 10.1109/JSTSP.2014.2334278.
    [19] JIANG Fan, WEN Fuxi, GE Yu, et al. Beamspace multidimensional ESPRIT approaches for simultaneous localization and communications[J]. 2021. doi: 10.48550/arXiv.2111.07450.
    [20] NAKAMURA M, HASHIZUME H, and SUGIMOTO M. Simultaneous localization and communication method using short-time and narrow-band dual-carrier acoustic signals[J]. IEEE Sensors Journal, 2022, 22(6): 5163–5172. doi: 10.1109/JSEN.2021.3107849.
    [21] WEI Xiuhong and DAI Linglong. Channel estimation for extremely large-scale massive MIMO: Far-field, near-field, or hybrid-field?[J]. IEEE Communications Letters, 2022, 26(1): 177–181. doi: 10.1109/LCOMM.2021.3124927.
    [22] LU Yu and DAI Linglong. Near-field channel estimation in mixed LoS/NLoS environments for extremely large-scale MIMO systems[J]. IEEE Transactions on Communications, 2023, 71(6): 3694–3707. doi: 10.1109/TCOMM.2023.3260242.
    [23] WEI Xiuhong, DAI Linglong, ZHAO Yajun, et al. Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?[J]. China Communications, 2022, 19(6): 193–204. doi: 10.23919/JCC.2022.06.015.
    [24] EMENONYE D R, DHILLON H S, and BUEHRER R M. RIS-aided localization under position and orientation offsets in the near and far field[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9327–9345. doi: 10.1109/TWC.2023.3270029.
    [25] YANG Songjie, XIE Chenfei, LYU Wanting, et al. Near-field channel estimation for extremely large-scale reconfigurable intelligent surface (XL-RIS)-aided wideband mmWave systems[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(6): 1567–1582. doi: 10.1109/JSAC.2024.3389120.
    [26] XIAO Jian, WANG Ji, WANG Zhaolin, et al. Multi-task learning for near/far field channel estimation in STAR-RIS networks[J]. IEEE Transactions on Communications, 2024, 72(10): 6344–6359. doi: 10.1109/TCOMM.2024.3402619.
    [27] ZUO Weiliang, XIN Jingmin, OHMORI H, et al. Subspace-based algorithms for localization and tracking of multiple near-field sources[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(1): 156–171. doi: 10.1109/JSTSP.2019.2897953.
    [28] XIMENES L R, FAVIER G, and DE ALMEIDA A L F. Semi-blind receivers for non-regenerative cooperative MIMO communications based on nested PARAFAC modeling[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4985–4998. doi: 10.1109/TSP.2015.2454473.
    [29] LIN Yuxing, JIN Shi, MATTHAIOU M, et al. Tensor-based channel estimation for millimeter wave MIMO-OFDM with dual-wideband effects[J]. IEEE Transactions on Communications, 2020, 68(7): 4218–4232. doi: 10.1109/TCOMM.2020.2983673.
    [30] ZHOU Zhou, FANG Jun, YANG Linxiao, et al. Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1524–1538. doi: 10.1109/JSAC.2017.2699338.
    [31] DU Jianhe, CHENG Yuan, JIN Libiao, et al. Nested tensor-based integrated sensing and communication in RIS-assisted THz MIMO systems[J]. IEEE Transactions on Signal Processing, 2024, 72: 1141–1157. doi: 10.1109/TSP.2024.3359323.
    [32] NION D and SIDIROPOULOS N D. Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5693–5705. doi: 10.1109/TSP.2010.2058802.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  35
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-04
  • 修回日期:  2025-03-19
  • 网络出版日期:  2025-03-31

目录

    /

    返回文章
    返回