高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上下文感知多感受野融合网络的定向遥感目标检测

姚婷婷 肇恒鑫 冯子豪 胡青

姚婷婷, 肇恒鑫, 冯子豪, 胡青. 上下文感知多感受野融合网络的定向遥感目标检测[J]. 电子与信息学报. doi: 10.11999/JEIT240560
引用本文: 姚婷婷, 肇恒鑫, 冯子豪, 胡青. 上下文感知多感受野融合网络的定向遥感目标检测[J]. 电子与信息学报. doi: 10.11999/JEIT240560
YAO Tingting, ZHAO Hengxin, FENG Zihao, HU Qing. A Context-Aware Multiple Receptive Field Fusion Network for Oriented Object Detection in Remote Sensing Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240560
Citation: YAO Tingting, ZHAO Hengxin, FENG Zihao, HU Qing. A Context-Aware Multiple Receptive Field Fusion Network for Oriented Object Detection in Remote Sensing Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240560

上下文感知多感受野融合网络的定向遥感目标检测

doi: 10.11999/JEIT240560
基金项目: 国家自然科学基金(62001078),中央高校基本科研业务费 (3132023249)
详细信息
    作者简介:

    姚婷婷:女,副教授,研究方向为计算机视觉与图像处理等

    肇恒鑫:男,硕士生,研究方向为遥感目标检测

    冯子豪:男,硕士生,研究方向为图像增强处理

    胡青:男,教授,研究方向为海事信息传输、自动识别系统等

    通讯作者:

    姚婷婷 ytt1030@dlmu.edu.cn

  • 中图分类号: TN911.73; TP751.1

A Context-Aware Multiple Receptive Field Fusion Network for Oriented Object Detection in Remote Sensing Images

Funds: The National Natural Science Foundation of China (62001078), The Fundamental Research Funds for the Central Universities (3132023249)
  • 摘要: 以广距鸟瞰视角拍摄获取的遥感图像通常具有目标种类多、尺度变化大以及背景信息丰富等特点,为目标检测任务带来巨大挑战。针对遥感图像成像特点,该文设计一种上下文感知多感受野融合网络,通过充分挖掘深度网络中遥感图像在不同尺寸特征描述下所包含的上下文关联信息,提高图像特征描述力,进而提升遥感目标检测精度。首先,在特征金字塔前4层网络中构建了感受野扩张模块,通过扩大网络在不同尺度特征图上的感受野范围,增强网络对不同尺度遥感目标的感知能力;进一步,构建了高层特征聚合模块,通过将特征金字塔网络中高层语义信息聚合到低层特征中,从而将特征图中所包含的多尺度上下文信息进行有效融合;最后,在双阶段定向目标检测框架下设计了特征细化区域建议网络。通过对一阶段提案进行精细化处理,提升提案准确性,进而提高二阶段兴趣区域对齐网络得到的不同成像方向下的遥感目标检测性能。在公测数据集DIOR-R和HRSC2016上的定性和定量的对比实验结果证明,所提方法对不同种类和尺度大小的遥感目标均能实现更加准确的检测。
  • 图  1  上下文感知多感受野融合网络架构

    图  2  感受野扩张模块

    图  3  大核选择卷积注意力子模块

    图  4  移位滑窗自注意力模块

    图  5  高层特征聚合模块

    图  6  特征细化区域建议网络

    图  7  不同方法在DIOR-R和HRSC2016数据集上检测结果对比

    表  1  不同算法在DOIR-R数据集上的定量对比(%)

    方法 Gliding Vertex[18] Rotated Faster RCNN[3] S2ANet[19] R3Det[20] EDA[21] QPDet[22] ABFL[23] 本文方法
    APL 62.67 62.92 62.32 62.60 63.01 71.52 62.04 72.00
    APO 38.56 39.94 43.38 42.98 36.87 42.01 42.54 49.49
    BF 71.94 71.95 71.90 71.42 72.05 77.99 76.40 72.11
    BC 81.20 81.48 81.32 81.42 81.42 81.47 85.33 81.60
    BR 37.73 36.71 40.24 38.45 40.22 40.80 37.75 45.81
    CH 72.48 72.54 75.37 72.63 72.26 72.64 74.34 80.51
    ESA 78.62 77.35 78.17 78.81 78.04 77.36 77.97 80.67
    ETS 69.04 68.75 69.63 67.60 69.98 66.69 69.29 70.14
    DAM 22.81 25.31 26.47 27.51 28.63 31.84 26.78 29.94
    GF 77.89 76.36 73.75 70.91 65.38 69.16 73.88 78.16
    GTF 82.13 76.57 78.41 77.11 82.35 82.24 77.78 83.10
    HA 46.22 45.39 41.82 39.69 44.86 42.78 43.15 46.61
    OP 54.76 50.10 56.34 54.94 55.58 54.67 54.13 58.66
    SH 81.03 80.93 80.99 80.26 81.03 80.90 84.97 81.19
    STA 74.88 75.27 63.25 72.88 73.99 77.15 67.88 74.59
    STO 62.54 62.12 69.72 61.30 62.57 62.73 70.04 62.46
    TC 81.41 81.46 81.47 81.51 81.49 81.56 81.39 81.54
    TS 54.25 50.25 52.40 55.72 59.83 47.77 54.63 55.88
    VE 43.22 42.81 47.64 44.81 43.29 47.39 45.35 43.55
    WM 65.13 63.02 64.42 64.15 64.79 64.12 65.01 66.11
    $ {\text{A}}{{\text{P}}_{50}} $ 62.91 62.06 62.95 62.34 62.88 63.64 63.53 65.71
    $ {\text{A}}{{\text{P}}_{75}} $ 40.00 39.55 35.85 38.82 40.02 36.79 42.68 46.72
    $ {\text{A}}{{\text{P}}_{50:95}} $ 38.34 38.22 36.25 37.84 38.36 37.51 40.94 43.17
    下载: 导出CSV

    表  2  不同算法在HRSC2016数据集上的定量对比(%)

    方法 Backbone mAP(07) mAP(12)
    Rotate Faster-RCNN[3] R-50 86.49
    Gliding Vertex[18] R-101 88.20
    S2Anet[19] R-101 90.17 95.01
    R3Det[20] R-101 89.26 96.01
    EDA[21] R-50 89.13
    QPDet[22] R-50 90.47 96.60
    ABFL[23] R-101 90.30 96.46
    DFDet[24] R-101 90.38 96.72
    本文方法 R-50 90.50 98.26
    下载: 导出CSV

    表  3  不同模块消融实验(%)

    感受野扩
    张模块
    高层特征
    聚合模块
    特征细化区
    域建议网络
    AP50 AP75 AP50:95
    64.06 43.96 41.10
    64.86 46.05 42.93
    64.61 44.80 41.87
    64.17 44.68 41.69
    65.71 46.72 43.17
    下载: 导出CSV
  • [1] RAO Chaofan, WANG Jiabao, CHENG Gong, et al. Learning orientation-aware distances for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5610911. doi: 10.1109/TGRS.2023.3278933.
    [2] XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 3520–3529. doi: 10.1109/ICCV48922.2021.00350.
    [3] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [4] YANG Xue, YANG Jirui, YAN Junchi, et al. SCRDet: Towards more robust detection for small, cluttered and rotated objects[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 8232–8241. doi: 10.1109/ICCV.2019.00832.
    [5] LI Zhonghua, HOU Biao, WU Zitong, et al. FCOSR: A simple anchor-free rotated detector for aerial object detection[J]. Remote Sensing, 2023, 15(23): 5499. doi: 10.3390/rs15235499.
    [6] TIAN Yang, ZHANG Mengmeng, LI Jinyu, et al. FPNFormer: Rethink the method of processing the rotation-invariance and rotation-equivariance on arbitrary-oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5605610. doi: 10.1109/TGRS.2024.3351156.
    [7] MING Qi, MIAO Lingjuan, ZHOU Zhiqiang, et al. CFC-Net: A critical feature capturing network for arbitrary-oriented object detection in remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5605814. doi: 10.1109/TGRS.2021.3095186.
    [8] REN Zhida, TANG Yongqiang, HE Zewen, et al. Ship detection in high-resolution optical remote sensing images aided by saliency information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5623616. doi: 10.1109/TGRS.2022.3173610.
    [9] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [10] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
    [11] LUO Wenjie, LI Yujia, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4905–4913.
    [12] LI Yuxuan, HOU Qibin, ZHENG Zhaohui, et al. Large selective kernel network for remote sensing object detection[C]. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 16748–16759. doi: 10.1109/ICCV51070.2023.01540.
    [13] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [14] CHENG Gong, WANG Jiabao, LI Ke, et al. Anchor-free oriented proposal generator for object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5625411. doi: 10.1109/TGRS.2022.3183022.
    [15] LIU Zikun, WANG Hongzhen, WENG Lubin, et al. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1074–1078. doi: 10.1109/LGRS.2016.2565705.
    [16] ZENG Ying, CHEN Yushi, YANG Xue, et al. ARS-DETR: Aspect ratio-sensitive detection transformer for aerial oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5610315. doi: 10.1109/TGRS.2024.3364713.
    [17] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4.
    [18] XU Yongchao, FU Mingtao, WANG Qimeng, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452–1459. doi: 10.1109/TPAMI.2020.2974745.
    [19] HAN Jiaming, DING Jian, LI Jie, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5602511. doi: 10.1109/TGRS.2021.3062048.
    [20] YANG Xue, YAN Junchi, FENG Ziming, et al. R3Det: Refined single-stage detector with feature refinement for rotating object[C]. Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021: 3163–3171. doi: 10.1609/aaai.v35i4.16426.
    [21] CHEN Weining, MIAO Shencheng, WANG Guangxing, et al. Recalibrating features and regression for oriented object detection[J]. Remote Sensing, 2023, 15(8): 2134. doi: 10.3390/rs15082134.
    [22] YAO Yanqing, CHENG Gong, WANG Guangxing, et al. On improving bounding box representations for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5600111. doi: 10.1109/TGRS.2022.3231340.
    [23] ZHAO Zifei and LI Shengyang. ABFL: Angular boundary discontinuity free loss for arbitrary oriented object detection in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5611411. doi: 10.1109/TGRS.2024.3368630.
    [24] XIE Xingxing, CHENG Gong, RAO Chaofan, et al. Oriented object detection via contextual dependence mining and penalty-incentive allocation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5618010. doi: 10.1109/TGRS.2024.3385985.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  23
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-04
  • 修回日期:  2024-12-17
  • 网络出版日期:  2025-01-06

目录

    /

    返回文章
    返回