高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向6G近场海洋通信信道建模与信号传播机理研究

江浩 石旺旗 朱秋明 束锋 WANGJiangzhou

江浩, 石旺旗, 朱秋明, 束锋, WANGJiangzhou. 面向6G近场海洋通信信道建模与信号传播机理研究[J]. 电子与信息学报. doi: 10.11999/JEIT240518
引用本文: 江浩, 石旺旗, 朱秋明, 束锋, WANGJiangzhou. 面向6G近场海洋通信信道建模与信号传播机理研究[J]. 电子与信息学报. doi: 10.11999/JEIT240518
JIANG Hao, SHI Wangqi, ZHU Qiuming, SHU Feng, WANG Jiangzhou. Research on Channel Modeling and Characteristics Analysis for RIS-Enabled Near-Field Marine Communications Towards 6G[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240518
Citation: JIANG Hao, SHI Wangqi, ZHU Qiuming, SHU Feng, WANG Jiangzhou. Research on Channel Modeling and Characteristics Analysis for RIS-Enabled Near-Field Marine Communications Towards 6G[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240518

面向6G近场海洋通信信道建模与信号传播机理研究

doi: 10.11999/JEIT240518
基金项目: 国家自然科学基金(62471238, 62101275, 61771244, 62071234),2021年海南省重大科技计划项目(ZDKJ2021022)
详细信息
    作者简介:

    江浩:男,副教授,研究方向为RIS无线信道建模与仿真、近场通信、高能效通信等

    石旺旗:男,硕士生,研究方向为RIS无线通信信道建模与仿真等

    朱秋明:教授,研究方向为无线信道测量建模与数字孪生、电磁频谱态势可视化测绘与认知等

    束锋:男,教授,研究方向为RIS辅助的方向调制、空间调制、中继等

    WANGJiangzhou:中国工程院外籍院士,英国皇家工程院院士、IEEE Fellow、IET Fellow,英国肯特大学教授,研究方位为移动通信

    通讯作者:

    江浩 jianghao@nuist.edu.cn

  • 中图分类号: TN929.5

Research on Channel Modeling and Characteristics Analysis for RIS-Enabled Near-Field Marine Communications Towards 6G

Funds: The National Natural Science Foundation of China (62471238, 62101275, 61771244, 62071234), 2021 Hainan Province Major Science and Technology Plan Project (ZDKJ2021022)
  • 摘要: 可重构智能超表面(RIS)作为6G移动通信中的潜在关键技术之一,具有低成本、低能耗和易于部署等特点。该文提出将RIS技术引入至海洋无线通信场景中,可使无线传输环境从不可控变为可控。然而,现有的信道模型难以充分揭示RIS使能基站-海面无人船近场通信信号独特的传输机理,信道特性分析方法与建模理论难以在计算准确性与复杂度之间实现平衡。因此,该文通过对RIS使能近场海洋通信中各子信道进行建模,提出空时频多域信号传播机理分析方法,建立RIS使能基站-无人船近场海洋通信参数化统计信道模型,解决现有RIS信道建模方法难以兼顾精度与效率的技术瓶颈问题,提高RIS使能近场海洋通信系统设计过程中的信道模型匹配效率,为我国6G移动通信产业的快速发展提供技术支撑。
  • 图  1  RIS辅助无人船通信的3D通道模型

    图  2  RIS阵列子阵列切割方案示意图

    图  3  RIS使能基站-无人船通信信道在基于所提子阵列方法与传统方法的建模误差对比

    图  4  RIS使能基站-无人船通信信道模型在不同RIS阵列空间位置下的空间互相关特性

    图  5  RIS使能基站-无人船通信信道模型在不同距离参数$ {D_0} $下的空间相关特性

    图  6  RIS使能基站-无人船通信信道模型在不同时间节点下的时域自相关特性

  • [1] JIANG Wei, HAN Bin, HABIBI M A, et al. The road towards 6G: A comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2021, 2: 334–366. doi: 10.1109/OJCOMS.2021.3057679.
    [2] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [3] 何雨蓓. 6G海洋通信信道特性分析与建模[D]. [博士论文], 山东大学, 2023. doi: 10.27272/d.cnki.gshdu.2023.007461.

    HE Yubei. Channel characteristic analysis and channel modeling for 6G maritime communications[D]. [Ph. D. dissertation], Shandong University, 2023. doi: 10.27272/d.cnki.gshdu.2023.007461.
    [4] JIANG Hao, MUKHERJEE M, ZHOU Jie, et al. Channel modeling and characteristics for 6G wireless communications[J]. IEEE Network, 2021, 35(1): 296–303. doi: 10.1109/MNET.011.2000348.
    [5] 孙华丽, 孟维晓, 张乃通. 空时频MIMO信道建模与实现[J]. 电子与信息学报, 2008, 30(9): 2279–2282. doi: 10.3724/SP.J.1146.2007.00209.

    SUN Huali, MENG Weixiao, and ZHANG Naitong. Modeling and implementation of space-time-frequency MIMO channel[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2279–2282. doi: 10.3724/SP.J.1146.2007.00209.
    [6] 陈天贝, 李娜, 陶小峰. 低开销智能反射面辅助无线通信研究综述[J]. 中兴通讯技术, 2023, 29(6): 29–38. doi: 10.12142/ZTETJ.202306006.

    CHEN Tianbei, LI Na, and TAO Xiaofeng. Survey on low-overhead reconfigurable intelligent surface assisted wireless communication[J]. ZTE Technology Journal, 2023, 29(6): 29–38. doi: 10.12142/ZTETJ.202306006.
    [7] 李贵勇, 杜一舟, 王丹. 可重构智能表面辅助的多用户通信宽带信道估计[J]. 电子与信息学报, 2023, 45(7): 2443–2450. doi: 10.11999/JEIT220775.

    LI Guiyong, DU Yizhou, and WANG Dan. Wideband channel estimation for multiuser communication based on reconfigurable intelligent surface assisted[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2443–2450. doi: 10.11999/JEIT220775.
    [8] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [9] BASAR E and YILDIRIM I. Reconfigurable intelligent surfaces for future wireless networks: A channel modeling perspective[J]. IEEE Wireless Communications, 2021, 28(3): 108–114. doi: 10.1109/MWC.001.2000338.
    [10] 黄子轩, 姚刘嘉, 游昌盛. 超大规模智能反射面辅助的近场移动通信研究[J]. 无线电通信技术, 2024, 50(2): 263–268. doi: 10.3969/j.issn.1003-3114.2024.02.006.

    HUANG Zixuan, YAO Liujia, and YOU Changsheng. Research on extremely large-scale IRS assisted near-field mobile communications[J]. Radio Communications Technology, 2024, 50(2): 263–268. doi: 10.3969/j.issn.1003-3114.2024.02.006.
    [11] ZHANG Haiyang, SHLEZINGER N, GUIDI F, et al. 6G wireless communications: From far-field beam steering to near-field beam focusing[J]. IEEE Communications Magazine, 2023, 61(4): 72–77. doi: 10.1109/MCOM.001.2200259.
    [12] CUI Mingyao, WU Zidong, LU Yu, et al. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions[J]. IEEE Communications Magazine, 2023, 61(1): 40–46. doi: 10.1109/MCOM.004.2200136.
    [13] YUAN Jiwei, QIAN Hongbao, and WANG Donghai. Study on application of channel propagation model for maritime communication[C]. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, Dalian, China, 2022: 855–859. doi: 10.1109/IPEC54454.2022.9777553.
    [14] MA Zhangfeng, AI Bo, HE Ruisi, et al. Modeling and analysis of MIMO multipath channels with aerial intelligent reflecting surface[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 3027–3040. doi: 10.1109/JSAC.2022.3196112.
    [15] SUN Guiqi, HE Ruisi, MA Zhangfeng, et al. A 3D geometry-Based non-stationary MIMO channel model for RIS-assisted communications[C]. 2021 IEEE 94th Vehicular Technology Conference, Norman, OK, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625374.
    [16] SUN Yingzhuo, WANG Chengxiang, HUANG Jie, et al. A 3D non-stationary channel model for 6G wireless systems employing intelligent reflecting surfaces with practical phase shifts[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 496–510. doi: 10.1109/TCCN.2021.3075438.
  • 加载中
图(6)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  98
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-08-23
  • 网络出版日期:  2024-08-30

目录

    /

    返回文章
    返回