Design and Optimization of Task-driven Dynamic Scalable Network Architecture in Spatial Information Networks
-
摘要: 现阶段空间信息网络中各卫星子系统各成体系且相互割裂,使得网络呈现封闭、分裂态势,形成严峻资源壁垒,造成空间资源协同应用能力弱以及网络扩展能力低等难题。传统架构设计采用对现阶段空间网络架构的“完全颠覆”的思路,大大增加了实际部署的难度。为此,该文立足于卫星网络现状,采取“按步骤分阶段升级”的思路,促进现有网络架构的演进,从任务驱动角度开展动态可伸缩空间信息网络架构模型研究,实现空间资源在各卫星子系统间高效动态共享,促进空间资源根据任务需求变化而动态高效汇聚。首先,提出分阶段实现的网络架构模型,旨在兼容和升级现有网络架构。随后,介绍核心部件网络资源协调器的详细设计,包括网络结构与工作协议、超帧结构以及高效的网络资源动态分配策略,实现空间数据的高效传输。仿真结果表明,所提网络架构实现了网络资源高效共享,大大提升空间信息网络的网络性能。Abstract: At the present stage, the satellite subsystems in Space Information Networks (SINs) have their own systems and are separated from each other, which makes the network appear closed and fragmented, forming a severe resource barrier and resulting in weak collaborative application ability of space resources and low network expansion ability. The traditional architecture design adopts the “completely subversive” idea of the current space networks, which greatly increases the difficulty of actual deployment. Therefore, based on the current status of satellite networks, the idea of “upgrading step by step” is adopted to promote the evolution of the existing network architecture, and a dynamic and scalable architecture model is proposed in SINs from the perspective of mission drive, so as to realize the efficient and dynamic sharing of space resources among subsystems and promote the dynamic and efficient aggregation of space resources according to the changes in mission requirements. Firstly, a phased network architecture model is proposed, aiming at compatibility and upgrading of the existing network architecture. Then, the design of the core component coordinator is introduced, including network structure and working protocol, superframe structure, and efficient network resource allocation strategy, to realize the efficient transmission of spatial data. The simulation results show that the proposed network architecture realizes the efficient sharing of network resources and greatly improves the utilization rate of network resources.
-
表 1 基于任务驱动的动态可伸缩空间信息网络架构
(1)信息输入:初始化队列$ {\boldsymbol{Q}}(t) = \{ {Q_n}(t)\} $ (2)资源感知:资源协调器在超帧$ t $内的时隙0:1)收集物理网络信息计算卫星与数传站之间的时间窗口信息;2)收集卸载任务请求,结合时间窗口信息,构建卸载任务信息; (3)算法执行:在超帧$ t $的时隙1内: (a)构建优化问题$ {\text{P6}} $,调用Kuhn-Munkres 算法求解最优变量值$ {{\boldsymbol{x}}^{\rm{opt}}} $; (b)基于最优变量值$ {{\boldsymbol{x}}^{\rm{opt}}} $,构建优化问题$ {\text{P8}} $,并执行如下流程求解最优变量值$ ({y}^{\text{opt}},{f}^{\text{opt}}) $,其中$ {y}^{\text{opt}}=\left\{({y}_{s,n}^{t}{)}^{\text{opt}}\right\} $和$ {f}^{\text{opt}}=\left\{({f}_{s}^{t}{)}^{\text{opt}}\right\} $; For $ s = 1:S $ 根据式(14)求出 $ ({y}_{s,n}^{t}{)}^{\text{opt}} $; $ ({f}_{s}^{t}{)}^{\text{opt}}={{\displaystyle \sum _{h\in \mathcal{H}}({x}_{s,h}^{t})}}^{\text{opt}}{C}_{s,h}^{t} $ End (4)策略分发:资源协调器将$ {{\boldsymbol{x}}^{\rm{opt}}} $和$ ({y}^{\text{opt}},{f}^{\text{opt}}) $转化为指令,推送到实际卫星子系统,进而构建虚拟数传站; (5)数据卸载:虚拟卫星子系统根据其网络资源和任务信息执行数据卸载; (6)超帧索引更新:检测超帧$ t $的时长是否执行结束,若结束则更新超帧索引:$ t = t + 1 $,根据式(5)更新队列$ {\boldsymbol{Q}}(t) $,并返回步骤(2). -
[1] HU Fei, YANG Chaowei, SCHNASE J L, et al. Climatespark: An in-memory distributed computing framework for big climate data analytics[J]. Computers & Geosciences, 2018, 115: 154–166. doi: 10.1016/j.cageo.2018.03.011. [2] LI Deren.On the space and sky information real-time intelligent service system with deep integration of military and civilian[J].Civil-Military Integration on Cyberspace, 2018(12):12-15.LI Deren.On the space and sky information real-time intelligent service system with deep integration of military and civilian[J].Civil-Military Integration on Cyberspace, 2018(12):12-15. [3] 张威, 张更新, 苟亮. 空间信息网络中的星座设计方法研究[J]. 中兴通讯技术, 2016, 22(4): 19–23,45. doi: 10.3969/j.issn.1009-6868.2016.04.004.ZHANG Wei, ZHANG Gengxin, and GOU Liang. Satellite constellation design in space information network[J]. ZTE Technology Journal, 2016, 22(4): 19–23,45. doi: 10.3969/j.issn.1009-6868.2016.04.004. [4] ZHANG Wei, ZHANG Gengxin, XIE Zhidong, et al. A hierarchical autonomous system based space information network architecture and topology control[J]. Journal of Communications and Information Networks, 2016, 1(3): 77–89. doi: 10.11959/j.issn.2096-1081.2016.017. [5] SUN Jiayu, QI Weijing, SONG Qingyang, et al. A new architecture for space information networks based on an MEO constellation optical backbone network[C]. Asia Communications and Photonics Conference 2017, Guangzhou, China, 2017: Su3C. 3. doi: 10.1364/ACPC.2017.Su3C.3. [6] MA Ting, QIAN Bo, QIN Xiaohan, et al. Satellite-terrestrial integrated 6G: An ultra-dense LEO networking management architecture[J]. IEEE Wireless Communications, 2024, 31(1): 62–69. doi: 10.1109/MWC.011.2200198. [7] ZHENG Gao, WANG Ning, and TAFAZOLLI R R. SDN in space: A virtual data-plane addressing scheme for supporting LEO satellite and terrestrial networks integration[J]. IEEE/ACM Transactions on Networking, 2024, 32(2): 1781–1796. doi: 10.1109/TNET.2023.3330672. [8] YANG Huiting, LIU Wei, WANG Xiangfeng, et al. Group sparse space information network with joint virtual network function deployment and maximum flow routing strategy[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5291–5305. doi: 10.1109/TWC.2022.3233067. [9] XIA Qiufen, WANG Guijie, XU Zichuan, et al. Efficient algorithms for service chaining in NFV-enabled satellite edge networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 5677–5694. doi: 10.1109/TMC.2023.3312352. [10] BAO Jinzhen, ZHAO Baokang, YU Wangrong, et al. OpenSAN: A software-defined satellite network architecture[C]. Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, USA, 2014: 347–348. doi: 10.1145/2619239.2631454. [11] YANG Bowei, WU Yue, CHU Xiaoli, et al. Seamless handover in software-defined satellite networking[J]. IEEE Communications Letters, 2016, 20(9): 1768–1771. doi: 10.1109/LCOMM.2016.2585482. [12] FENG Jing, JIANG Lei, SHEN Ye, et al. A scheme for software defined ORS satellite networking[C]. 2014 IEEE Fourth International Conference on Big Data and Cloud Computing, Sydney, Australia, 2014: 716–721. doi: 10.1109/BDCloud.2014.19. [13] FENG Bohao, ZHOU Huachun, ZHANG Hongke, et al. HetNet: A flexible architecture for heterogeneous satellite-terrestrial networks[J]. IEEE Network, 2017, 31(6): 86–92. doi: 10.1109/MNET.2017.1600330. [14] SHENG Min, WANG Yu, LI Jiandong, et al. Toward a flexible and reconfigurable broadband satellite network: Resource management architecture and strategies[J]. IEEE Wireless Communications, 2017, 24(4): 127–133. doi: 10.1109/MWC.2017.1600173. [15] LI Taixin, ZHOU Huachun, LUO Hongbin, et al. SERvICE: A software defined framework for integrated space-terrestrial satellite communication[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 703–716. doi: 10.1109/TMC.2017.2732343. [16] ZHANG Ning, ZHANG Shan, YANG Peng, et al. Software defined space-air-ground integrated vehicular networks: Challenges and solutions[J]. IEEE Communications Magazine, 2017, 55(7): 101–109. doi: 10.1109/MCOM.2017.1601156. [17] SHI Yongpeng, CAO Yurui, LIU Jiajia, et al. A cross-domain SDN architecture for multi-layered space-terrestrial integrated networks[J]. IEEE Network, 2019, 33(1): 29–35. doi: 10.1109/MNET.2018.1800191. [18] CHEN Chen, LIAO Zhan, JU Ying, et al. Hierarchical domain-based multicontroller deployment strategy in SDN-enabled space-air-ground integrated network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 4864–4879. doi: 10.1109/TAES.2022.3199191. [19] ESMAT H H, LORENZO B, and SHI Weisong. Toward resilient network slicing for satellite-terrestrial edge computing IoT[J]. IEEE Internet of Things Journal, 2023, 10(16): 14621–14645. doi: 10.1109/JIOT.2023.3277466. [20] CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789. [21] ZHANG Zhenjiang, ZHANG Wenyu, and TSENG F H. Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques[J]. IEEE Network, 2019, 33(1): 70–76. doi: 10.1109/MNET.2018.1800172. [22] QIU Chao, YAO Haipeng, YU R F, et al. Deep Q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5871–5883. doi: 10.1109/TVT.2019.2907682. [23] XIE Renchao, TANG Qinqin, WANG Qiuning, et al. Satellite-terrestrial integrated edge computing networks: Architecture, challenges, and open issues[J]. IEEE Network, 2020, 34(3): 224–231. doi: 10.1109/MNET.011.1900369. [24] ZHANG Yalin, GAO Xiaozheng, YUAN Hang, et al. Joint UAV trajectory and power allocation with hybrid FSO/RF for secure space-air-ground communications[J]. IEEE Internet of Things Journal, 2024, 11(19): 31407–31421. doi: 10.1109/JIOT.2024.3419264. [25] ZHAI Daosen, ZHANG Ruonan, DU Jianbo, et al. Simultaneous wireless information and power transfer at 5G new frequencies: Channel measurement and network design[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 171–186. doi: 10.1109/JSAC.2018.2872366. [26] SONG Yanjie, OU Junwei, WU Jian, et al. A cluster-based genetic optimization method for satellite range scheduling system[J]. Swarm and Evolutionary Computation, 2023, 79: 101316. doi: 10.1016/j.swevo.2023.101316.