高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种无人机冲突探测与避让系统决策方法

汤新民 李帅 顾俊伟 管祥民

汤新民, 李帅, 顾俊伟, 管祥民. 一种无人机冲突探测与避让系统决策方法[J]. 电子与信息学报. doi: 10.11999/JEIT240503
引用本文: 汤新民, 李帅, 顾俊伟, 管祥民. 一种无人机冲突探测与避让系统决策方法[J]. 电子与信息学报. doi: 10.11999/JEIT240503
TANG Xinmin, LI Shuai, GU Junwei, GUAN Xiangmin. A Decision-making Method for UAV Conflict Detection and Avoidance System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240503
Citation: TANG Xinmin, LI Shuai, GU Junwei, GUAN Xiangmin. A Decision-making Method for UAV Conflict Detection and Avoidance System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240503

一种无人机冲突探测与避让系统决策方法

doi: 10.11999/JEIT240503
基金项目: 国家自然科学基金(52072174, 61773202),中国民航管理干部学院民航通用航空运行重点实验室开放基金(CAMICKFJJ-2019-04)
详细信息
    作者简介:

    汤新民:男,教授,研究方向为新一代空中交通管制自动化系统、先进场面活动引导与控制系统、无人机运行服务与交通管理系统等

    李帅:男,硕士生,研究方向为无人机感知与避撞、无人机监视

    顾俊伟:男,博士生,研究方向为先进场面活动引导与控制系统

    管祥民:男,副教授,研究方向为通用航空及无人机

    通讯作者:

    汤新民 tangxinmin@nuaa.edu.cn

  • 中图分类号: U8

A Decision-making Method for UAV Conflict Detection and Avoidance System

Funds: The National Natural Science Foundation of China (52072174, 61773202), The Open Fund for the Key Laboratory of Civil Aviation General Aviation Operations of China Civil Aviation Management Cadre College (CAMICKFJJ-2019-04)
  • 摘要: 针对无人机探测与避让(DAA)系统中无人机飞行碰撞避免的决策问题,该文提出一种将无人机系统检测和避免警报逻辑(DAIDALUS)和马尔可夫决策过程(MDP)相结合的方法。DAIDALUS算法的引导逻辑可以根据当前状态空间计算无人机避撞策略,将这些策略作为MDP的动作空间,并设置合适的奖励函数和状态转移概率,建立MDP模型,探究不同折扣因子对无人机飞行避撞过程的影响。仿真结果表明:相比于DAIDALUS,本方法的效率提升27.2%;当折扣因子设置为0.99时,可以平衡长期与短期收益;净空入侵率为5.8%,威胁机与本机最近距离为343 m,该方法可以满足无人机飞行过程中避撞的要求。
  • 图  1  算法流程图

    图  2  净空模型示意图

    图  3  马尔可夫决策过程基本框架

    图  4  状态转换示意图

    图  5  仿真设计结构图

    图  6  威胁机飞行轨迹示意图

    图  7  最优飞行策略示意图

    图  8  对比试验飞行策略示意图

    图  9  不同折扣因子下各时间步奖励图

    图  10  不同折扣因子下各时间步累计奖励图

    图  11  本机与威胁机距离变化图

    图  12  本无人机与威胁机最小距离变化

    表  1  警报参数表

    警报级别水平分离距离(m)垂直分离距离(m)平均警报时间(s)
    无告警>1219>213>55
    预防级121921355
    纠正级121913755
    警报级121913725
    下载: 导出CSV

    表  2  规避策略-无人机动作集合映射表

    DAIDALUS规避策略无人机动作
    改变航向 - 向左转左移
    改变航向 - 向右转右移
    改变高度 - 上升上升
    改变高度 - 下降下降
    改变速度 – 加速前进加速
    改变速度 – 减速前进减速
    下载: 导出CSV

    表  3  飞行轨迹设计表

    无人机飞行航路点飞行高度(m)
    UAV036.03,116.46;36.13,116.57
    UAV136.04,116.59;36.09,116.52; 36.13,116.46;200
    UAV236,116.45;36.07,116.5; 36.12,116.58;180
    UAV336.10,116.45;36.08,116.51; 36,116.55;220
    UAV436.15,116.48;36.05,116.5; 36.00,116.51;200
    下载: 导出CSV

    表  4  参数设计表

    参数名称 参数值
    3维状态空间离散化宽度 100 m, 100 m, 100 m
    状态转移概率 0.05, 1–0.05($k$–1)
    训练成功奖励系数 20
    碰撞惩罚系数 20
    距离惩罚系数 0.1
    靠近目标点奖励系数 1
    折扣因子 0.98, 0.95, 0.9
    下载: 导出CSV
  • [1] DIEZ-TOMILLO J, ALCARAZ-CALERO J M, and WANG Qi. Face verification algorithms for UAV applications: An empirical comparative analysis[J]. Journal of Communications Software and Systems, 2024, 20(1): 1–12. doi: 10.24138/JCOMSS-2023-0165.
    [2] OMERI M, ISUFAJ R, and ORTIZ R M. Quantifying well clear for autonomous small UAS[J]. IEEE Access, 2022, 10: 68365–68383. doi: 10.1109/ACCESS.2022.3186025.
    [3] KURU K, PINDER J M, JON WATKINSON B, et al. Toward mid-air collision-free trajectory for autonomous and pilot-controlled unmanned aerial vehicles[J]. IEEE Access, 2023, 11: 100323–100342. doi: 10.1109/ACCESS.2023.3314504.
    [4] INCE B, MARTINEZ V C, SELVAM P K, et al. Sense and avoid considerations for safe sUAS operations in urban environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2024, 5(7): 1–16. doi: 10.1109/MAES.2024.3397269.
    [5] LEE S, WU M G, and CONE A C. Evaluating noncooperative detect-and-avoid well clear definitions with alerting performance and surveillance requirement[J]. Journal of Air Transportation, 2021, 29(4): 171–183. doi: 10.2514/1.D0246.
    [6] RTCA. RTCA DO-365B Minimum Operational Performance Standards (MOPS) for detect and avoid (DAA) systems[S]. Washington: RTCA, 2021.
    [7] BERNARDES FERNANDES FERREIRA N, MOSCATO M, TITOLO L, et al. A provably correct floating-point implementation of well clear avionics concepts[C]. The 23rd Conference on Formal Methods in Computer-Aided Design, Wien, Austria, 2023: 37–46. doi: 10.34727/2023/isbn.978-3-85448-060-0_32.
    [8] RYU J Y, LEE H, and LEE H T. Detect and avoid AI system model using a deep neural network[C]. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference, Portsmouth, USA, 2022: 1–8. doi: 10.1109/DASC55683.2022.9925767.
    [9] 高雅琪. 无人机系统中DAA模块的研究和设计实现[D]. [硕士论文], 电子科技大学, 2022. doi: 10.27005/d.cnki.gdzku.2022.003399.

    GAO Yaqi. Research design and implementation on DAA module of UAV system[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022. doi: 10.27005/d.cnki.gdzku.2022.003399.
    [10] DE OLIVEIRA Í R, MATSUMOTO T, MAYNE A, et al. Analyzing the closed-loop performance of detect-and-avoid systems[C]. 2023 IEEE 26th International Conference on Intelligent Transportation Systems, Bilbao, Spain, 2023: 4947–4952. doi: 10.1109/ITSC57777.2023.10422365.
    [11] 赵柠霄. 无人机探测与避撞系统告警和引导逻辑的研究[D]. [硕士论文], 电子科技大学, 2023. doi: 10.27005/d.cnki.gdzku.2023.005879.

    ZHAO Ningxiao. Research on warning and guidance logic in detect and avoid of UAV[D]. [Master dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.005879.
    [12] LIU Haotian, JIN Jiangfeng, LIU Kun, et al. Research on UAV air combat maneuver decision based on decision tree CART algorithm[M]. FU Wenxing, GU Mancang, and NIU Yifeng. Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022). Singapore, Singapore: Springer, 2023: 2638–2650. doi: 10.1007/978-981-99-0479-2_243.
    [13] HU Shiguang, RU Le, LV Maolong, et al. Evolutionary game analysis of behaviour strategy for UAV swarm in communication-constrained environments[J]. IET Control Theory & Applications, 2024, 18(3): 350–363. doi: 10.1049/cth2.12602.
    [14] CHANG Zheng, DENG Hengwei, YOU Li, et al. Trajectory design and resource allocation for multi-UAV networks: Deep reinforcement learning approaches[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2940–2951. doi: 10.1109/TNSE.2022.3171600.
    [15] SHEN Yang, WANG Xianbing, WANG Huajun, et al. A dynamic task assignment model for aviation emergency rescue based on multi-agent reinforcement learning[J]. Journal of Safety Science and Resilience, 2023, 4(3): 284–293. doi: 10.1016/J.JNLSSR.2023.06.001.
    [16] KATZ S M, ALVAREZ L E, OWEN M, et al. Collision risk and operational impact of speed change advisories as aircraft collision avoidance maneuvers[C]. The AIAA AVIATION 2022 Forum, Chicago, USA, 2022: 3824. doi: 10.2514/6.2022-3824.
    [17] 王允钊. 机载防撞系统ACAS X中TRM模块的设计与实现[D]. [硕士论文], 电子科技大学, 2021.

    WANG Yunzhao. Design and implementation of TRM module in airborne collision avoidance system X[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [18] HE Donglin, YANG Youzhi, DENG Shengji, et al. Comparison of collision avoidance logic between ACAS X and TCAS II in general aviation flight[C]. 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology, Dali, China, 2023: 568–573. doi: 10.1109/ICCASIT58768.2023.10351533.
    [19] RUBÍ B, MORCEGO B, and PÉREZ R. Quadrotor path following and reactive obstacle avoidance with deep reinforcement learning[J]. Journal of Intelligent & Robotic Systems, 2021, 103(4): 62. doi: 10.1007/s10846-021-01491-2.
    [20] KATZ S M, JULIAN K D, STRONG C A, et al. Generating probabilistic safety guarantees for neural network controllers[J]. Machine Learning, 2023, 112(8): 2903–2931. doi: 10.1007/s10994-021-06065-9.
    [21] MOON C and AHN J. Markov decision process-based potential field technique for UAV planning[J]. Journal of the Korean Society for Industrial and Applied Mathematics, 2021, 25(4): 149–161. doi: 10.12941/jksiam.2021.25.149.
    [22] LI Ming, BAI He, and KRISHNAMURTHI N. A Markov decision process for the interaction between autonomous collision avoidance and delayed pilot commands[J]. IFAC-PapersOnLine, 2019, 51(34): 378–383. doi: 10.1016/j.ifacol.2019.01.012.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  62
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-09-07
  • 网络出版日期:  2024-09-28

目录

    /

    返回文章
    返回