高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种目标区域特征增强的SAR图像飞机目标检测与识别网络

韩萍 赵涵 廖大钰 彭彦文 程争

韩萍, 赵涵, 廖大钰, 彭彦文, 程争. 一种目标区域特征增强的SAR图像飞机目标检测与识别网络[J]. 电子与信息学报. doi: 10.11999/JEIT240491
引用本文: 韩萍, 赵涵, 廖大钰, 彭彦文, 程争. 一种目标区域特征增强的SAR图像飞机目标检测与识别网络[J]. 电子与信息学报. doi: 10.11999/JEIT240491
HAN Ping, ZHAO Han, LIAO Dayu, PENG Yanwen, CHENG Zheng. A SAR Image Aircraft Target Detection and Recognition Network with Target Region Feature Enhancement[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240491
Citation: HAN Ping, ZHAO Han, LIAO Dayu, PENG Yanwen, CHENG Zheng. A SAR Image Aircraft Target Detection and Recognition Network with Target Region Feature Enhancement[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240491

一种目标区域特征增强的SAR图像飞机目标检测与识别网络

doi: 10.11999/JEIT240491
基金项目: 中央高校基金(3122020043)
详细信息
    作者简介:

    韩萍:女,教授,研究方向为SAR图像处理与目标检测

    赵涵:男,硕士生,研究方向为SAR图像飞目标检测

    廖大钰:男,硕士生,研究方向为SAR图像飞机目标检测

    彭彦文:男,硕士生,研究方向为PoLSAR图像飞机场跑道检测

    程争:男,实验师,研究方向为极化SAR图像处理与目标检测

    通讯作者:

    韩萍 hanpingcauc@163.com

  • 中图分类号: TN958

A SAR Image Aircraft Target Detection and Recognition Network with Target Region Feature Enhancement

Funds: The Central University Fund (3122020043)
  • 摘要: 在合成孔径雷达(SAR)图像飞机目标检测识别中,飞机目标图像呈现离散特性以及结构之间的相似性会降低飞机检测与识别的准确率。为此该文设计了一种目标区域特征增强的SAR图像飞机目标检测与识别网络。网络由3部分组成:保护飞机特征的跨阶段部分网络(FP-CSPDarnet)、自适应特征融合的特征金字塔(FPN-A)以及目标区域散射特征提取与增强的检测头(D-Head)。FP-CSPDarnet在提取特征的同时可以有效保护SAR图像飞机特征;FPN-A采用多层次特征自适应融合、细化,来增强飞机特征;D-Head在检测前有效增强飞机可辨别特征,提升飞机检测与识别精度。利用SAR-ADRD数据集的实验结果证明了该文所提方法有效性,其平均精度相对与基线网络YOLOv5s提升了2.0%。
  • 图  1  SAR图像中飞机的结构展示

    图  2  YOLOv5网络架构图

    图  3  FPN架构图

    图  4  本文网络架构图

    图  5  CSPDarknet骨干网络与FP-CSPDarnet结构对比图

    图  6  SPD-Conv结构图

    图  7  FPN-A结构图

    图  8  AR模块

    图  9  D-Head结构图

    图  10  AF模块

    图  11  数据集中飞机的类别与数量

    图  12  骨干网络输出特征图通道可视化结果图

    图  13  优化检测头前后的混淆矩阵

    图  14  各个网络检测结果图1

    图  15  各个网络检测结果图2

    表  1  YOLOv5网络深度消融实验

    模型 P(%) R(%) mAP(%) Parameters(M) fps
    YOLOv5n 90.6 89.1 92.0 1.8 93.6
    YOLOv5s 93.0 90.6 93.7 7.0 93.5
    YOLOv5m 92.2 90.2 93.3 20.9 68.5
    YOLOv5l 93.1 91.2 93.0 46.1 47.6
    YOLOv5x 94.0 91.0 94.4 86.2 41.9
    下载: 导出CSV

    表  2  网络各个模块消融实验

    FPN-A FP-CSPDarnet D-Head P(%) R(%) mAP(%) Parameters(M) fps
    Baseline 93.0 90.6 93.7 7.0 93.6
    90.2 86.5 92.4 8.5 129.9
    92.3 92.5 94.8 10.3 129.9
    本文方法 92.5 92.3 95.7 12.2 108.7
    下载: 导出CSV

    表  3  骨干网络P-CSPDarknet中各模块消融实验(%)

    FPN-A FP-CSPDarnet (骨干结构) FP-CSPDarnet (骨干结构+SPD-Conv) P (%) R (%) mAP
    90.2 86.5 92.4
    91.8 90.2 93.9
    92.3 92.5 94.8
    下载: 导出CSV

    表  4  不同检测网络对比实验

    P(%) R(%) mAP(%) Parameters(M) fps
    YOLOv5s 92.6 89.9 93.7 7.0 93.5
    Faster R-CNN 82.0 85.6 87.8 41.2 11.2
    TOOD 84.9 81.7 85.0 31.8 12.9
    YOLOX-s 80.7 83.4 89.7 8.9 41.2
    YOLOv7s 91.1 87.6 93.5 9.2 75.8
    本文方法 92.5 92.3 95.7 12.3 108.7
    下载: 导出CSV

    表  5  数据集内不同飞机类别在不同检测网络的精度(%)

    网络模型/飞机类别 Boeing787 A220 ARJ21 Boeing737-800 A320/321 A330 Others mAP(%)
    YOLOv5s 98.0 96.6 93.6 87.2 88.1 95.1 96.9 93.7
    Yolov7s 96.8 95.5 92.2 93.0 85.8 96.2 94.2 93.5
    Tood 90.7 94.3 85.3 81.1 67.8 91.0 84.4 84.9
    YOLOX-S 89.2 86.4 86.3 94.5 95.4 86.7 89.5 89.7
    Faster-R-CNN 91.8 94.8 87.9 85.6 74.7 91.1 89.0 87.8
    本文方法 98.7 98.7 97.7 95.1 95.4 94.8 97.1 95.7
    下载: 导出CSV
  • [1] 高贵, 周蝶飞, 蒋咏梅, 等. SAR图像目标检测研究综述[J]. 信号处理, 2008, 24(6): 971–981. doi: 10.3969/j.issn.1003-0530.2008.06.018.

    GAO Gui, ZHOU Diefei, JIANG Yongmei, et al. Study on target detection in SAR Image: A survey[J]. Signal Processing, 2008, 24(6): 971–981. doi: 10.3969/j.issn.1003-0530.2008.06.018.
    [2] 李永祯, 黄大通, 邢世其, 等. 合成孔径雷达干扰技术研究综述[J]. 雷达学报, 2020, 9(5): 753–764. doi: 10.12000/JR20087.

    LI Yongzhen, HUANG Datong, XING Shiqi, et al. A review of synthetic aperture radar jamming technique[J]. Journal of Radars, 2020, 9(5): 753–764. doi: 10.12000/JR20087.
    [3] FU Kun, DOU Fangzheng, LI Hengchao, et al. Aircraft recognition in SAR images based on scattering structure feature and template matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4206–4217. doi: 10.1109/JSTARS.2018.2872018.
    [4] HU Hao, HUANG Lanqing, and YU Wenxian. Aircraft detection for HR SAR Images in non-homogeneous background using GGMD-based modeling[J]. Chinese Journal of Electronics, 2019, 28(6): 1271–1280. doi: 10.1049/cje.2019.08.010.
    [5] CHEN Jiehong, ZHANG Bo, and WANG Chao. Backscattering feature analysis and recognition of civilian aircraft in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 796–800. doi: 10.1109/LGRS.2014.2362845.
    [6] HE Chu, TU Mingxia, LIU Xinlong, et al. Mixture statistical distribution based multiple component model for target detection in high resolution SAR imagery[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 336. doi: 10.3390/ijgi6110336.
    [7] 高君, 高鑫, 孙显. 基于几何特征的高分辨率SAR图像飞机目标解译方法[J]. 国外电子测量技术, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008.

    GAO Jun, GAO Xin, and SUN Xian. Geometrical features-based method for aircraft target interpretation in high-resolution SAR images[J]. Foreign Electronic Measurement Technology, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008.
    [8] ZHANG Peng, XU Hao, TIAN Tian, et al. SFRE-net: Scattering feature relation enhancement network for aircraft detection in SAR images[J]. Remote Sensing, 2022, 14(9): 2076. doi: 10.3390/rs14092076.
    [9] 赵琰. 基于深度学习的SAR图像飞机目标检测与识别[D]. [硕士论文], 国防科技大学, 2020. doi: 10.27052/d.cnki.gzjgu.2020.001038.

    ZHAO Yan. Deep learning based aircraft detection and recognition in SAR images[D]. [Master dissertation], National University of Defense Technology, 2020. doi: 10.27052/d.cnki.gzjgu.2020.001038.
    [10] WANG Zhen, XU Nan, GUO Jianxin, et al. SCFNet: Semantic condition constraint guided feature aware network for aircraft detection in SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239420. doi: 10.1109/TGRS.2022.3224599.
    [11] 王智睿, 康玉卓, 曾璇, 等. SAR-AIRcraft-1.0: 高分辨率SAR飞机检测识别数据集[J]. 雷达学报, 2023, 12(4): 906–922. doi: 10.12000/JR23043.

    WANG Zhirui, KANG Yuzhuo, ZENG Xuan, et al. SAR-AIRcraft-1.0: High-resolution SAR aircraft detection and recognition dataset[J]. Journal of Radars, 2023, 12(4): 906–922. doi: 10.12000/JR23043.
    [12] WU Wentong, LIU Han, LI Lingling, et al. Application of local fully convolutional neural network combined with YOLO v5 algorithm in small target detection of remote sensing image[J]. PLoS One, 2021, 16(10): e0259283. doi: 10.1371/journal.pone.0259283.
    [13] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, American, 2017: 2117–2125. doi: 10.1109/CVPR.2017.106.
    [14] CHEN Qiang, WANG Yingming, YANG Tong, et al. You only look one-level feature[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13039–13048. doi: 10.1109/CVPR46437.2021.01284.
    [15] SONG Guanglu, LIU Yu, and WANG Xiaogang. Revisiting the sibling head in object detector[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, American, 2020: 11563–11572. doi: 10.1109/CVPR42600.2020.01158.
    [16] ZHUANG Jiayuan, QIN Zheng, YU Hao, et al. Task-specific context decoupling for object detection[J]. arXiv preprint arXiv: 2303.01047, 2023.
    [17] GE Zhang, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv preprint arXiv: 2107.08430, 2021.
    [18] FENG Chengjian, ZHONG Yujie, GAO Yu, et al. TOOD: Task-aligned one-stage object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3490–3499. doi: 10.1109/ICCV48922.2021.00349.
    [19] LI Chuyi, LI Lulu, JIANG Hongliang, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv: 2209.02976, 2022.
    [20] WANG Gang, CHEN Yanfei, AN Pei, et al. UAV-YOLOv8: A small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190. doi: 10.3390/s23167190.
    [21] ZHAO Yan, ZHAO Lingjun, LIU Zhong, et al. Attentional feature refinement and alignment network for aircraft detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5220616. doi: 10.1109/TGRS.2021.3139994.
    [22] HAN Ping, LIAO Dayu, HAN Binbin, et al. SEAN: A simple and efficient attention network for aircraft detection in SAR images[J]. Remote Sensing, 2022, 14(18): 4669. doi: 10.3390/rs14184669.
    [23] SUN Xian, LV Yixuan, WANG Zhirui, et al. SCAN: Scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226517. doi: 10.1109/TGRS.2022.3166174.
    [24] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [25] WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 7464–7475. doi: 10.1109/CVPR52729.2023.00721.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  43
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 修回日期:  2024-11-21
  • 网络出版日期:  2024-11-25

目录

    /

    返回文章
    返回