高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法

邓洪高 余润华 纪元法 吴孙勇 孙少帅

邓洪高, 余润华, 纪元法, 吴孙勇, 孙少帅. 偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法[J]. 电子与信息学报. doi: 10.11999/JEIT240469
引用本文: 邓洪高, 余润华, 纪元法, 吴孙勇, 孙少帅. 偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法[J]. 电子与信息学报. doi: 10.11999/JEIT240469
DENG Honggao, YU Runhua, JI Yuanfa, WU Sunyong, SUN Shaoshuai. An Adaptive Target Tracking Method Utilizing Marginalized Cubature Kalman Filter with Uncompensated Biases[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240469
Citation: DENG Honggao, YU Runhua, JI Yuanfa, WU Sunyong, SUN Shaoshuai. An Adaptive Target Tracking Method Utilizing Marginalized Cubature Kalman Filter with Uncompensated Biases[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240469

偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法

doi: 10.11999/JEIT240469
基金项目: 广西重点研发项目(AB23026150, AB23026147),国家自然科学基金(U23A20280)
详细信息
    作者简介:

    邓洪高:男,研究员,研究方向为雷达信号处理和卫星导航

    余润华:男,硕士生,研究方向为雷达多目标跟踪、空间误差配准和多源信息融合

    纪元法:男,教授,研究方向为卫星导航和信号处理

    吴孙勇:男,教授,研究方向为雷达信号处理、多目标检测与跟踪和多源信息融合

    孙少帅:女,硕士,研究方向为项目管理

    通讯作者:

    吴孙勇 wusunyong121991@163.com

  • 中图分类号: V243.2; TN953

An Adaptive Target Tracking Method Utilizing Marginalized Cubature Kalman Filter with Uncompensated Biases

Funds: Guangxi Key Research and Development Project (AB23026150, AB23026147), The National Natural Science Foundation of China (U23A20280)
  • 摘要: 针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏差,将相邻时刻目标状态扩维以满足实时滤波需求,利用逆Wishart分布建模未知量测噪声协方差矩阵,从而建立目标状态、指示变量、噪声协方差矩阵的联合分布,并通过变分贝叶斯推断来求解各个参数的近似后验。为减小滤波负担,对扩维后的状态向量进行边缘化处理,结合容积卡尔曼滤波方法实现边缘化容积卡尔曼滤波跟踪。仿真实验结果表明,所提方法能够同时处理突变测量偏差和未知时变量测噪声,从而对目标进行有效跟踪。
  • 图  1  跟踪效果

    图  2  E[r]值变化图

    图  3  不同方法的位置RMSE

    图  4  不同方法的速度RMSE

    图  5  不同方法的位置ARMSE

    图  6  不同方法的速度ARMSE

    图  7  不同$\varepsilon $值的位置ARMSE

    图  8  不同$\varepsilon $值的速度ARMSE

    图  9  边缘化处理前后的RMSE差值

    图  10  边缘化处理前后的ARMSE差值

    1  偏差未补偿自适应边缘化容积卡尔曼滤波跟踪算法

     输入:状态估计值${{\boldsymbol{\tilde x}}_{0|0}}$,误差协方差${{\boldsymbol{P}}_{0|0}}$,逆Wishart分布参数
     ${u_{0|0}}$, ${{\boldsymbol{U}}_{0|0}}$,贝塔分布参数${\alpha _0}$, ${\beta _0}$,初始时刻伯努利变量的期望
     值${\text{E}}[{r_0}]$,遗忘因子$ \rho $,迭代次数N
     输出:${{\boldsymbol{\tilde x}}_{k|k}}$,${{\boldsymbol{P}}_{k|k}}$, ${u_{k|k}}$, ${{\boldsymbol{U}}_{k|k}}$。
     (1) for k = 1:K
     (2)  通过式(23)计算${{\boldsymbol{\tilde x}}_{k|k - 1}}$, ${{\boldsymbol{P}}_{k|k - 1}}$, $ {{\boldsymbol{C}}_{k|k - 1}} $;
     (3)  计算:$ {u_{k|k - 1}} = \rho {u_{k - 1|k - 1}} $, ${{\boldsymbol{U}}_{k|k - 1}} = \rho {{\boldsymbol{U}}_{k - 1|k - 1}}$;
     (4)  初始化:$ {\boldsymbol{\tilde x}}_{k|k}^{{\text{(0)}}} = {{\boldsymbol{\tilde x}}_{k|k - 1}} $, ${\boldsymbol{P}}_{k|k}^{{\text{(0)}}} = {{\boldsymbol{P}}_{k|k - 1}}$,
        $ u_{k|k}^{(0)} = {u_{k|k - 1}} $, $ {\boldsymbol{U}}_{k|k}^{(0)} = {{\boldsymbol{U}}_{k|k - 1}} $;
     (5)  for i = 0:N
     (6)   通过式(14)计算${{\stackrel \frown{{\boldsymbol{R}}} }}_k^{(i + 1)}$;
     (7)   通过式(35)计算${\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i{\text{ + 1)}}}$, ${\boldsymbol{P}}_{k|k}^{{\text{(}}i{\text{ + 1)}}}$;
     (8)   通过式(18)计算${({\text{E}}[{r_k}])^{(i + 1)}}$;
     (9)   根据式(34)判断传感器测量偏差是否突变
     (10)    若传感器测量偏差突变:
     (11)    ${{\boldsymbol{\tilde x}}_{k|k}} = {\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}0{\text{)}}}$, ${{\boldsymbol{P}}_{k|k}} = {\boldsymbol{P}}_{k|k}^{(0)}$;
     (12)    ${u_{k|k}} = u_{k|k}^{(0)}$, ${{\boldsymbol{U}}_{k|k}} = {\boldsymbol{U}}_{k|k}^{(0)}$;
     (13)    跳出循环;
     (14)   若传感器测量偏差不突变:
     (15)    ${{\boldsymbol{\tilde x}}_{k|k}} = {\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i{\text{ + 1)}}}$,${{\boldsymbol{P}}_{k|k}} = {\boldsymbol{P}}_{k|k}^{(i + 1)}$;
     (16)    通过式(21)计算$\alpha _k^{(i + 1)}$和$\beta _k^{(i + 1)}$;
     (17)    通过式(22)计算$u_{k|k}^{(i + 1)}$和$ {\boldsymbol{U}}_{k|k}^{(i + 1)} $;
     (18)    ${u_{k|k}} = u_{k|k}^{{\text{(}}i{\text{ + 1)}}}$, $ {{\boldsymbol{U}}_{k|k}} = {\boldsymbol{U}}_{k|k}^{(i + 1)} $;
     (19)   计算迭代停止阈值$\kappa $:
          $\kappa = ||{\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i + 1{\text{)}}} - {\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i{\text{)}}}||/||{\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i{\text{)}}}||$;
     (20)    当$\kappa \le {10^{ - 6}}$时:
     (21)     跳出循环。
     (22)   end for
     (23) end for
    下载: 导出CSV

    表  1  运行时间对比(s)

    方法时间
    传统CKF1.038 1
    增量CKF1.210 0
    NRCKF11.343 8
    提出的方法(非边缘化)12.866 4
    提出的方法(边缘化)7.333 3
    下载: 导出CSV

    表  2  仅测量偏差${{\boldsymbol{b}}_k}$变化时各方法ARMSE对比

    传统CKF增量CKFNRCKF提出的边缘化CKF
    ${\text{ARMS}}{{\text{E}}_{{\text{pos}}}}$(m)155.359 178.411 847.686 815.359 0
    ${\text{ARMS}}{{\text{E}}_{{\text{vel}}}}$(m/s)6.533 43.533 92.062 21.549 0
    下载: 导出CSV

    表  3  仅量测协方差矩阵${{\boldsymbol{R}}_k}$变化时各方法ARMSE对比

    传统CKF增量CKFNRCKF提出的边缘化CKF
    ${\text{ARMS}}{{\text{E}}_{{\text{pos}}}}$(m)49.822 029.690 622.204 59.597 0
    ${\text{ARMS}}{{\text{E}}_{{\text{vel}}}}$(m/s)1.481 21.655 11.696 71.518 7
    下载: 导出CSV
  • [1] LIN X and BAR-SHALOM Y. Multisensor target tracking performance with bias compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1139–1149. doi: 10.1109/TAES.2006.248212.
    [2] 董云龙, 张焱. 雷达系统偏差精确配准技术研究综述[J]. 现代雷达, 2024, 46(3): 1–8. doi: 10.16592/j.cnki.1004-7859.2024.03.001.

    DONG Yunlong and ZHANG Yan. A review of radar system deviation accurate registration technology[J]. Modern Radar, 2024, 46(3): 1–8. doi: 10.16592/j.cnki.1004-7859.2024.03.001.
    [3] 崔亚奇, 熊伟, 何友. 基于MLR的机动平台传感器误差配准算法[J]. 航空学报, 2012, 33(1): 118–128. doi: 11-1929/V.20111213.1132.001.

    CUI Yaqi, XIONG Wei, and HE You. Mobile platform sensor registration algorithm based on MLR[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 118–128. doi: 11-1929/V.20111213.1132.001.
    [4] XIU Jianjuan, DONG Kai, and HE You. Systematic error real-time registration based on modified input estimation[J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 986–992. doi: 10.21629/JSEE.2016.05.06.
    [5] GENG Han, LIANG Yan, LIU Yurong, et al. Bias estimation for asynchronous multi-rate multi-sensor fusion with unknown inputs[J]. Information Fusion, 2018, 39: 139–153. doi: 10.1016/j.inffus.2017.03.002.
    [6] CHUGHTAI A H, MAJAL A, TAHIR M, et al. Variational-based nonlinear Bayesian filtering with biased observations[J]. IEEE Transactions on Signal Processing, 2022, 70: 5295–5307. doi: 10.1109/TSP.2022.3217921.
    [7] HUANG Yulong, JIA Guangle, CHEN Badong, et al. A new robust Kalman filter with adaptive estimate of time-varying measurement bias[J]. IEEE Signal Processing Letters, 2020, 27: 700–704. doi: 10.1109/LSP.2020.2983552.
    [8] 傅惠民, 吴云章, 娄泰山. 欠观测条件下的增量Kalman滤波方法[J]. 机械强度, 2012, 34(1): 43–47. doi: 10.16579/j.issn.1001.9669.2012.01.014.

    FU Huimin, WU Yunzhang, and LOU Taishan. Incremental Kalman filter method under poor observation condition[J]. Journal of Mechanical Strength, 2012, 34(1): 43–47. doi: 10.16579/j.issn.1001.9669.2012.01.014.
    [9] 傅惠民, 娄泰山, 吴云章. 欠观测条件下的扩展增量Kalman滤波方法[J]. 航空动力学报, 2012, 27(4): 777–781. doi: 10.13224/j.cnki.jasp.2012.04.004.

    FU Huimin, LOU Taishan, and WU Yunzhang. Extended incremental Kalman filter method under poor observation condition[J]. Journal of Aerospace Power, 2012, 27(4): 777–781. doi: 10.13224/j.cnki.jasp.2012.04.004.
    [10] 马丽丽, 赵甜甜, 陈金广. 欠观测条件下的增量容积卡尔曼滤波[J]. 计算机工程, 2014, 40(10): 228–231,238. doi: 10.3969/j.issn.1000-3428.2014.10.043.

    MA Lili, ZHAO Tiantian, and CHEN Jinguang. Incremental cubature Kalman filtering under poor observation condition[J]. Computer Engineering, 2014, 40(10): 228–231,238. doi: 10.3969/j.issn.1000-3428.2014.10.043.
    [11] 傅惠民, 吴云章, 娄泰山. 自适应无迹增量滤波方法[J]. 航空动力学报, 2013, 28(2): 259–263. doi: 10.13224/j.cnki.jasp.2013.02.008.

    FU Huimin, WU Yunzhang, and LOU Taishan. Adaptive unscented incremental filter method[J]. Journal of Aerospace Power, 2013, 28(2): 259–263. doi: 10.13224/j.cnki.jasp.2013.02.008.
    [12] 孙小君, 周晗, 闫广明. 基于新息的自适应增量Kalman滤波器[J]. 电子与信息学报, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493.

    SUN Xiaojun, ZHOU Han, and YAN Guangming. Adaptive incremental Kalman filter based on innovation[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493.
    [13] LOU Taishan, YANG Ning, WANG Yan, et al. Target tracking based on incremental center differential Kalman filter with uncompensated biases[J]. IEEE Access, 2018, 6: 66285–66292. doi: 10.1109/ACCESS.2018.2879118.
    [14] 黄玉龙, 张勇刚, 武哲民, 等. 带有色厚尾量测噪声的鲁棒高斯近似滤波器和平滑器[J]. 自动化学报, 2017, 43(1): 114–131. doi: 10.16383/j.aas.2017.c150810.

    HUANG Yulong, ZHANG Yonggang, WU Zhemin, et al. Robust Gaussian approximate filter and smoother with colored heavy tailed measurement noise[J]. Acta Automatica Sinica, 2017, 43(1): 114–131. doi: 10.16383/j.aas.2017.c150810.
    [15] WANG Guoqing, ZHAO Jiaxiang, YANG Chunyu, et al. Robust Kalman filter for systems with colored heavy-tailed process and measurement noises[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(11): 4256–4260. doi: 10.1109/TCSII.2023.3283547.
    [16] WANG Hongwei, LI Hongbin, FANG Jun, et al. Robust Gaussian Kalman filter with outlier detection[J]. IEEE Signal Processing Letters, 2018, 25(8): 1236–1240. doi: 10.1109/LSP.2018.2851156.
    [17] HOSTETTLER R and SÄRKKÄ S. Rao-blackwellized Gaussian smoothing[J]. IEEE Transactions on Automatic Control, 2019, 64(1): 305–312. doi: 10.1109/TAC.2018.2828087.
    [18] JIA Guangle, HUANG Yulong, ZHANG Yonggang, et al. A novel adaptive Kalman filter with unknown probability of measurement loss[J]. IEEE Signal Processing Letters, 2019, 26(12): 1862–1866. doi: 10.1109/LSP.2019.2951464.
    [19] GRANSTRÖM K and ORGUNER U. On the reduction of Gaussian inverse Wishart mixtures[C]. 2012 15th International Conference on Information Fusion, Singapore, 2012: 2162–2169.
    [20] GU Peng, JING Zhongliang, and WU Liangbin. Robust adaptive multi-target tracking with unknown measurement and process noise covariance matrices[J]. IET Radar, Sonar & Navigation, 2022, 16(4): 735–747. doi: 10.1049/rsn2.12216.
    [21] ZHU Jiangbo, XIE Weixin, and LIU Zongxiang. Student’s t-based robust Poisson multi-Bernoulli mixture filter under heavy-tailed process and measurement noises[J]. Remote Sensing, 2023, 15(17): 4232. doi: 10.3390/rs15174232.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  25
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-11-30
  • 网络出版日期:  2024-12-09

目录

    /

    返回文章
    返回