Waveform Design of UAV-Enabled Integrated Sensing and Communication in Marine Environment
-
摘要: 未来6G将实现万物智能互联、虚拟和现实结合的全新时代,这离不开通信与感知技术的发展。但由于频率资源的稀缺,二者在频率资源上的共享是一个亟待解决的问题。通信感知一体化(ISAC)技术为解决这一问题提供了新的思路,它允许通信与感知共用一套设备、共享频率资源,可以同时完成目标探测和信息通信,被认为是6G的关键技术之一。同时我国是一个海洋大国,海洋资源丰富,海洋通信与海上目标感知需求急剧增加。该文对海洋环境下的ISAC技术进行了研究,提出一种海洋环境下的加权波形优化设计方法。通过仿真实验发现通信与感知的功率比值在[0.2, 0.5]区间内时,一体化波形不仅具有良好的通信性能,也具有不错的感知性能。最后对未来的工作内容进行了展望。Abstract: In the future, 6G will realize a new era of intelligent interconnection of everything and the combina-tion of virtual and reality, which can not be separated from the development of communication and perception technology. However, due to the scarcity of frequency resources, the sharing of frequency resources between them is an urgent problem to be solved. Integrated Sensing and Communication (ISAC) technology provides a new way to solve this problem. It allows communication and perception to share a set of equipment and frequency resources, and can simultaneously complete target detection and information communication, which is considered to be one of the key technologies of 6G. At the same time, China is powerful in the ocean with abundant marine resources and the demands for marine communication and marine targets perception have increased greatly. In this paper, ISAC technology in marine environment was studied, and a weighted waveform optimization design method is proposed. The simulation results show that when the power ratio of communication to perception is within the range of [0.2, 0.5], the integrated waveform not only has good communication performance, but also has good perception performance. Finally, the future work is prospected.
-
1 基于连续凸逼近的无人机通信感知加权波形优化算法
输入:每个用户的权重${\alpha _k}$,初始迭代点$\{ {\boldsymbol{W}}_k^{(0)}\} $,加权系数$\rho $,SCA迭代精度$\delta $,SCA最大迭代次数${N_{{\mathrm{iter}}}}$,迭代步长$\gamma $,无人机和$K$个通
信用户的位置坐标,探测目标个数$M$及方位,发射天线个数$N$,中间参数${{\boldsymbol{B}}_k}$和$ {A_k} $输出:问题(P4)的局部最优解$\{ {{\boldsymbol{W}}_k}\} $ 1:根据无人机和用户的位置坐标计算无人机到每个用户之间的近海面无线信道$\{ {{\boldsymbol{h}}_k}\} $ 2:根据问题(P1)计算MIMO雷达波束图样${{\boldsymbol{R}}_1}$ 3:变量初始化,令$ p = 0 $;$\{ {\boldsymbol{W}}_k^{(p)}\} = \{ {\boldsymbol{W}}_k^{(0)}\} $ 4:for i=1, 2,···, ${N_{{\mathrm{iter}}}}$ 5: 利用CVX等凸优化求解器进行求解问题(SDR5.$ p $),$ \{ \bar {\boldsymbol{W}}_k^*\} $是问题(SDR5.$ p $)的解 6: 使用SVD或高斯随机化得到秩一解$ \{ {\boldsymbol{W}}_k^*\} $ 7: if $ \displaystyle\sum\nolimits_{k = 1}^K {{{\left\| {{\boldsymbol{W}}_k^* - {\boldsymbol{W}}_k^{(p)}} \right\|}^2}} \le \delta $ 8: break 9: else 10: ${\boldsymbol{W}}_k^{(p + 1)} \leftarrow \gamma {\boldsymbol{W}}_k^* + (1 - \gamma ){\boldsymbol{W}}_k^{(p)}$ 11: end if 12:end for 13:输出$\{ {{\boldsymbol{W}}_k}\} = \{ {\boldsymbol{W}}_k^*\} $ 表 1 仿真参数设置
仿真参数 参数值 仿真参数 参数值 无人机高度(m) 100 蒸发导管有效高度(m) 300 通信用户个数 3 最大SCA迭代次数 10 通信用户1水平坐标(m) (200, –200) SCA迭代精度 10–4 通信用户2水平坐标(m) (100, –100) SCA迭代步长 0.9 通信用户3水平坐标(m) (–50, –100) 每个用户的权重${\alpha _k}$ 1 探测目标个数 1 地球半径(km) 6371 探测目标方向(°) 45 最小有效链路距离(km) 2.6 最大发射功率(W) 10 $ {A_0} $(dB) 100.7 发射天线个数 10 $ {n_{\mathrm{A}}} $ 1.9 接收天线高度(m) 1 $ {X_{\mathrm{A}}} $(dB) 18.5 -
[1] IMT-2030推进组. IMT-2030(6G)推进组正式发布《6G总体愿景与潜在关键技术》白皮书[J]. 互联网天地, 2021(6): 8–9.IMT-2030 Promotion Group. White paper: “Overall vision and potential key technologies of 6G”[J]. China Internet, 2021(6): 8–9. [2] 龙腾, 邢中玉. 太赫兹通信关键技术及应用场景分析[J]. 长江信息通信, 2024, 37(3): 69–72. doi: 10.20153/j.issn.2096-9759.2024.03.020.LONG Teng and XING Zhongyu. Analysis of key technologies and application scenarios of terahertz communication[J]. Changjiang Information & Communications, 2024, 37(3): 69–72. doi: 10.20153/j.issn.2096-9759.2024.03.020. [3] 李兴旺, 田志发, 张建华, 等. IRS辅助NOMA网络下隐蔽通信性能研究[J]. 中国科学: 信息科学, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.LI Xingwang, TIAN Zhifa, ZHANG Jianhua, et al. Performance analysis of covert communication in IRS-assisted NOMA networks[J]. SCIENTIA SINICA Informationis, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174. [4] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6g and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632. [5] CHEN Li, WANG Zhiqin, DU Ying, et al. Generalized transceiver beamforming for DFRC with MIMO radar and MU-MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1795–1808. doi: 10.1109/JSAC.2022.3155515. [6] KHAWAR A, ABDELHADI A, and CLANCY C. Target detection performance of spectrum sharing MIMO radars[J]. IEEE Sensors Journal, 2015, 15(9): 4928–4940. doi: 10.1109/JSEN.2015.2424393. [7] GAN Xu, YANG Zhaohui, HUANG Chongwen, et al. Bayesian learning-based ISAC in RIS-aided MmWave systems with superimposed symbols[C]. 2023 IEEE International Conference on Communications Workshops (ICC Workshops). Rome, Italy, 2023: 1463–1468. doi: 10.1109/ICCWorkshops57953.2023.10283788. [8] LYU Zhonghao, ZHU Guangxu, and XU Jie. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2424–2440. doi: 10.1109/TWC.2022.3211533. [9] 刘凡. MIMO雷达与多用户MIMO通信频谱共享关键技术研究[D]. [硕士论文], 北京理工大学, 2018. doi: 10.26948/d.cnki.gbjlu.2018.000033.LIU Fan. Research on the spectrum sharing of MIMO radar and MU-MIMO communications[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2018. doi: 10.26948/d.cnki.gbjlu.2018.000033. [10] ZHANG Tao, ZHU Kun, ZHENG Shaoqiu, et al. Trajectory design and power control for joint radar and communication enabled multi-UAV cooperative detection systems[J]. IEEE Transactions on Communications, 2023, 71(1): 158–172. doi: 10.1109/TCOMM.2022.3224751. [11] WANG Jue, ZHOU Haifeng, LI Ye, et al. Wireless channel models for maritime communications[J]. IEEE Access, 2018, 6: 68070–68088. doi: 10.1109/ACCESS.2018.2879902. [12] ANG C W, WEN Su. Signal strength sensitivity and its effects on routing in maritime wireless networks[C]. 2008 33rd IEEE Conference on Local Computer Networks (LCN). Montreal, Canada, 2008: 192–199. doi: 10.1109/LCN.2008.4664169. [13] DINC E and AKAN O B. Beyond-line-of-sight communications with ducting layer[J]. IEEE Communications Magazine, 2014, 52(10): 37–43. doi: 10.1109/MCOM.2014.6917399. [14] LEE Y, DONG Feng, and MENG Yusong. Near sea-surface mobile radiowave propagation at 5 GHz: Measurements and modeling[J]. Radioengineering, 2014, 23(3): 824–830. [15] MATOLAK D W and SUN Ruoyu. Air–ground channel characterization for unmanned aircraft systems-part I: Methods, measurements, and models for over-water settings[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 26–44. doi: 10.1109/TVT.2016.2530306. [16] FUHRMANN D R and ANTONIO G S. Transmit beamforming for MIMO radar systems using partial signal correlation[C]. The Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2004: 295–299. doi: 10.1109/ACSSC.2004.1399140. [17] STOICA P, LI Jian, and XIE Yao. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151–4161. doi: 10.1109/TSP.2007.894398. [18] LUO Zhiquan, MA W K, SO A M, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019. [19] RAZAVIYAY M. Successive convex approximation: Analysis and applications[D]. [Ph. D. dissertation], University of Minnesota, 2014.