高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弧形边界在伴随变量法下的电磁灵敏度分析

张玉贤 朱海鸽 冯晓丽 杨利霞 黄志祥

张玉贤, 朱海鸽, 冯晓丽, 杨利霞, 黄志祥. 弧形边界在伴随变量法下的电磁灵敏度分析[J]. 电子与信息学报. doi: 10.11999/JEIT240432
引用本文: 张玉贤, 朱海鸽, 冯晓丽, 杨利霞, 黄志祥. 弧形边界在伴随变量法下的电磁灵敏度分析[J]. 电子与信息学报. doi: 10.11999/JEIT240432
ZHANG Yuxian, ZHU Haige, FENG Xiaoli, YANG Lixia, HUANG Zhixiang. Electromagnetic Sensitivity Analysis of Curved Boundaries under the Method of Accompanying Variables[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240432
Citation: ZHANG Yuxian, ZHU Haige, FENG Xiaoli, YANG Lixia, HUANG Zhixiang. Electromagnetic Sensitivity Analysis of Curved Boundaries under the Method of Accompanying Variables[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240432

弧形边界在伴随变量法下的电磁灵敏度分析

doi: 10.11999/JEIT240432
基金项目: 国家自然科学基金(62101333, 62071003, U21A20457),安徽省高校优秀科研创新团队项目(2022AH010002)
详细信息
    作者简介:

    张玉贤:男,副教授,研究方向为计算电磁学、电磁逆时偏移成像技术

    朱海鸽:男,硕士生,研究方向为计算电磁学、灵敏度分析

    冯晓丽:女,助理工程师,研究方向为集成电路工艺设计

    杨利霞:男,教授,研究方向为等离子体物理、时域有限差分方法

    黄志祥:男,教授,研究方向为计算电磁学、多物理场

    通讯作者:

    杨利霞 lixiayang@yeah.net

  • 中图分类号: TN011; O441.4

Electromagnetic Sensitivity Analysis of Curved Boundaries under the Method of Accompanying Variables

Funds: The National Natural Science Foundation of China (62101333, 62071003, U21A20457), The Project of Excellent Scientific Research and Innovation Team of Universities in Anhui Province (2022AH010002)
  • 摘要: 电磁灵敏度分析是评估设计参数变化对电磁性能影响的一种方法,它通过计算灵敏度信息指导结构模型分析,以满足设计规范。商业软件在进行电磁结构优化设计时,常通过调整几何结构并使用传统算法,但这种方法计算耗时且资源占用大。为了提高模型设计的效率,该文提出一种稳定高效的处理方案,即伴随变量法(AVM),利用仅有2次算法模拟条件下,实现在参数变换上进行1~2阶灵敏度估计。当前AVM的绝大多数应用局限在矩形边界参数的灵敏度分析,该文首次开拓性地将AVM拓展到弧形边界参数的灵敏度分析。基于固定的本构参数、频率依赖性目标函数以及瞬态脉冲函数的3种不同情形设计的条件,实现了对弧形结构的电磁灵敏度的高效分析。与有限差分方法(FDM)相比,该方法在计算效率上得到了显著的提高。该方法有效实施显著拓宽了AVM在弧形边界上的应用范围,可应用于等离子体模型的电磁结构、复杂天线模型的边缘结构等优化问题上。当计算资源较少的情况下,可满足电磁结构优化的可靠性和稳定性。
  • 图  1  有损介质不连续面的不同节点分类

    图  2  2维TMz的平面波入射结构

    图  3  2维示例对介质相对介电常数、电导率和半径扫描的灵敏度

    图  4  频谱实部与虚部对所有参数的灵敏度

    图  5  探测点场值在整个时间步中有限差分法与伴随变量法灵敏度对比

    表  1  本构无关目标函数下AVM和FDM之间的范数误差

    误差类型 $ {\varepsilon _{\mathrm{r}}} $ $ {\sigma ^{\mathrm{e}}} $ $ r $
    AVM和CFD 2.0255×10–3 5.1667×10–4 6.2553×10–2
    AVM和FFD 2.7232×10–3 5.5774×10–4 7.3643×10–3
    AVM和BFD 1.3269×10–3 4.7567×10–4 1.4296×10–1
    下载: 导出CSV

    表  2  频率相关目标函数下AVM和FDM之间的范数误差

    误差类型 $ {\varepsilon _{\mathrm{r}}} $ $ {\sigma ^{\mathrm{e}}} $ $ {\boldsymbol{r}} $
    实部 虚部 实部 虚部 实部 虚部
    AVM和CFD 0.0099 0.0459 0.0551 0.0101 0.1178 0.1132
    AVM和FFD 0.0137 0.0594 0.0573 0.0101 0.1145 0.2525
    AVM和BFD 0.0013 0.0820 0.0533 0.0104 0.1287 0.1842
    下载: 导出CSV

    表  3  瞬态函数下AVM和FDM之间的范数误差

    误差类型 $ {\varepsilon _{\mathrm{r}}} $ (×10–2) $ {\sigma ^{\mathrm{e}}} $ (×10–3) $ {\boldsymbol{r}} $ (×10–1)
    AVM和CFD 0.3689 4.0714 1.1738
    AVM和FFD 1.3879 4.9260 1.3187
    AVM和BFD 1.9305 4.1873 1.3244
    下载: 导出CSV
  • [1] RAO S S. Engineering Optimization Theory and Practice[M]. 4th ed. Hoboken: John Wiley & Sons, 2009.
    [2] ANTONIOU A and LU Wusheng. Practical Optimization Algorithms and Engineering Applications[M]. New York: Springer, 2007.
    [3] WU J C, WANG S P, WANG Y H, et al. Sensitivity analysis of design parameters in transverse flux induction heating device[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 0600406. doi: 10.1109/TASC.2020.2973604.
    [4] DU Guanghui, HUANG Na, ZHAO Yanyun, et al. Comprehensive sensitivity analysis and multiphysics optimization of the rotor for a high speed permanent magnet machine[J]. IEEE Transactions on Energy Conversion, 2021, 36(1): 358–367. doi: 10.1109/TEC.2020.3005568.
    [5] BAKER R D. A methodology for sensitivity analysis of models fitted to data using statistical methods[J]. IMA Journal of Management Mathematics, 2001, 12(1): 23–39. doi: 10.1093/imaman/12.1.23.
    [6] CABANA K, CANDELO J E, and CASTILLO R. Statistical analysis of voltage sensitivity in distribution systems integrating DG[J]. IEEE Latin America Transactions, 2016, 14(10): 4304–4309. doi: 10.1109/TLA.2016.7786309.
    [7] LI Hui, DU Yuanbo, YANG Xian, et al. Optimization of operation parameters in a cesium atomic fountain clock using Monte Carlo method[J]. IEEE Access, 2021, 9: 132140–132149. doi: 10.1109/ACCESS.2021.3113161.
    [8] KIM H, LEE J, LEE J, et al. Topology optimization of a magnetic resonator using finite-difference time-domain method for wireless energy transfer[J]. IEEE Transactions on Magnetics, 2016, 52(3): 7003304. doi: 10.1109/TMAG.2015.2478444.
    [9] ZHONG Shuangying, RAN Chongxi, and LIU Song. The optimal force-gradient symplectic finite-difference time-domain scheme for electromagnetic wave propagation[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5450–5454. doi: 10.1109/TAP.2016.2606543.
    [10] MORI T, MURAKAMI R, SATO Y, et al. Shape optimization of wideband antennas for microwave energy harvesters using FDTD[J]. IEEE Transactions on Magnetics, 2015, 51(3): 8000804. doi: 10.1109/TMAG.2014.2359677.
    [11] FENG Feng, XUE Jianguo, ZHANG Jianan, et al. Concise and compatible MOR-based self-adjoint EM sensitivity analysis for fast frequency sweep[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 3829–3840. doi: 10.1109/TMTT.2023.3248167.
    [12] NA Weicong, LIU Ke, ZHANG Wanrong, et al. Advanced EM optimization using adjoint-sensitivity-based multifeature surrogate for microwave filter design[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(1): 1–4. doi: 10.1109/LMWT.2023.3329783.
    [13] NIKOLOVA N K, BANDLER J W, and BAKR M H. Adjoint techniques for sensitivity analysis in high-frequency structure CAD[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 403–419. doi: 10.1109/TMTT.2003.820905.
    [14] ZHANG Yu, AHMED O S, and BAKR M H. Adjoint sensitivity analysis of plasmonic structures using the FDTD method[J]. Optics Letters, 2014, 39(10): 3002–3005. doi: 10.1364/OL.39.003002.
    [15] HARMON J J, KEY C, ESTEP D, et al. Adjoint-based accelerated adaptive refinement in frequency domain 3-D finite element method scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 940–949. doi: 10.1109/TAP.2020.3016162.
    [16] HUANG Zhengyu, JIANG Feng, CHEN Zian, et al. A 3-D total-field/scattered-field plane-wave source for the unconditionally stable associated hermite FDTD method[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(2): 628–632. doi: 10.1109/LAWP.2023.3331381.
    [17] 叶志红, 张玉, 鲁唱唱. 端接复杂电路传输线网络的电磁耦合时域并行计算方法[J]. 电子与信息学报, 2024, 46(2): 713–719. doi: 10.11999/JEIT230098.

    YE Zhihong, ZHANG Yu, and LU Changchang. Time domain parallel calculation method for the coupling of transmission line network terminated with complex circuits[J]. Journal of Electronics & Information Technology, 2024, 46(2): 713–719. doi: 10.11999/JEIT230098.
    [18] ZHU Guocui, NIU Kaikun, LI Minquan, et al. High-order ME-CFS-PML implementations for terminating the FDTD domain composed of arbitrary media[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(4): 2414–2426. doi: 10.1109/TMTT.2023.33158373.
    [19] ZHAO Sihan, WEI Bing, HE Xinbo, et al. 2-D hybrid cylindrical FDTD method with unconditional stability[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(7): 955–958. doi: 10.1109/LMWT.2023.3261918.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  36
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-30
  • 修回日期:  2024-09-20
  • 网络出版日期:  2024-09-28

目录

    /

    返回文章
    返回