高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边缘计算中面向缓存的迁移决策和资源分配

杨守义 韩昊锦 郝万明 陈怡航

杨守义, 韩昊锦, 郝万明, 陈怡航. 边缘计算中面向缓存的迁移决策和资源分配[J]. 电子与信息学报. doi: 10.11999/JEIT240427
引用本文: 杨守义, 韩昊锦, 郝万明, 陈怡航. 边缘计算中面向缓存的迁移决策和资源分配[J]. 电子与信息学报. doi: 10.11999/JEIT240427
YANG Shouyi, HAN Haojin, HAO Wanming, CHEN Yihang. Cache Oriented Migration Decision and Resource Allocation in Edge Computing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240427
Citation: YANG Shouyi, HAN Haojin, HAO Wanming, CHEN Yihang. Cache Oriented Migration Decision and Resource Allocation in Edge Computing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240427

边缘计算中面向缓存的迁移决策和资源分配

doi: 10.11999/JEIT240427
基金项目: 国家自然科学基金(U1604159)
详细信息
    作者简介:

    杨守义:男,教授,研究方向为无线移动通信,毫米波通信,移动云计算等

    韩昊锦:男,硕士生,研究方向为移动边缘计算、无线通信等

    郝万明:男,副教授,研究方向为毫米波通信,太赫兹通信,大规模MIMO技术,物理层安全技术,智能超表面技术等

    陈怡航:女,硕士生,研究方向为移动边缘计算

    通讯作者:

    杨守义 iesyyang@zzu.edu.cn

  • 中图分类号: TN92

Cache Oriented Migration Decision and Resource Allocation in Edge Computing

Funds: The National Natural Science Foundation of China (U1604159)
  • 摘要: 边缘计算通过在网络边缘侧为用户提供计算资源和缓存服务,可以有效降低执行时延和能耗。由于用户的移动性和网络的随机性,缓存服务和用户任务会频繁地在边缘服务器之间迁移,增加了系统成本。该文构建了一种基于预缓存的迁移计算模型,研究了资源分配、服务缓存和迁移决策的联合优化问题。针对这一混合整数非线性规划问题,通过分解原问题,分别采用库恩塔克条件和二分搜索法对资源分配进行优化,并提出一种基于贪婪策略的迁移决策和服务缓存联合优化算法(JMSGS)获得最优迁移决策和缓存决策。仿真结果验证了所提算法的有效性,实现系统能耗和时延加权和最小。
  • 图  1  系统模型

    图  2  用户偏好影响

    图  3  带宽对系统成本影响

    图  4  应用程序对系统成本影响

    图  5  服务器数量对系统成本影响

    图  6  任务量大小对系统成本影响

    1  二分搜索的上行传输功率分配算法

     初始化:传输功率$ {p_i} $范围,收敛阈值$r$
     (1) 根据式(21)计算得出$ \phi (p_i^{{\text{max}}}) $
     (2) if $ \phi (p_i^{{\text{max}}}) \lt 0 $ then
     (3)  $ p_i^* = p_i^{{\text{max}}} $
     (4) else
     (5) 初始化参数$ {p_l} = p_i^{{\text{min}}} $, $ {p_h} = p_i^{{\text{max}}} $
     (6)  end if
     (7)  if $ \phi ({p_m}) < 0 $ then
     (8)  ${p_l} = {p_m}$
     (9)  else
     (10) $ {p_h} = {p_m} $
     (11) end if
     (12) until $({p_h} - {p_l}) \le r$
     (13) $ p_i^* = ({p_l} + {p_h})/2 $
    下载: 导出CSV

    2  基于贪婪决策的迁移缓存联合优化算法

     初始化:${N_{{\text{local}}}}{\text{ = }}{N_{\text{0}}}$, ${N_{{\text{mec}}}} = \phi $
     (1) for $i{\text{ = 1:}}N$
     (2)  for $m{\text{ = 1:}}M_i^{{\text{sort}}}$
     (3)  计算用户的代价增益函数$\Delta C(m)$
     (4) end for
     (5) 将每个用户的代价增益函数倒序排列,加入序列$N_i^{{\text{sort}}}$
     (6) for $ i{\text{ = 1:}}N_i^{{\text{sort}}} $ 计算目标函数值
     (7)  if ${\text{ET}}{{\text{C}}_{o + i}}{\text{ \lt ET}}{{\text{C}}_o}$
     (8)   $ \alpha = 1 $, $ \vartheta = 1 $ or $ \varpi $=1
     (9)  else
     (10) 保持原有模式
     (11) end if
     (12) if $ \varpi = 1 $, $ C_m^{\text{b}} + C_m^{\text{a}} \le C_m^{\max } $
     (13) 将应用程序缓存至服务器
     (14) else if $ X_m^{\min } < {X_i} $
     (15)   更新服务器状态
     (16) else
     (17)   本地执行
     (18) end if
    下载: 导出CSV

    表  1  仿真参数

    参数 数值
    任务大小$\lambda $(Mb) 10~20
    应用程序大小$b$(Gb) 1~5
    本地计算能力${f_{{\text{loc}}}}$(GHz) 0.5~1.5
    边缘服务器数目(个) 5~20
    噪声功率谱密度${N_{\text{0}}}$(dBm/Hz) –174
    系统带宽B(MHz) 1~2
    服务器计算能力${f_{{\text{es}}}}$(GHz) 15~25
    服务器缓存容量(Gb) 20-30
    下载: 导出CSV
  • [1] SHEN Xuemin, GAO Jie, WU Wen, et al. Holistic network virtualization and pervasive network intelligence for 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 1–30. doi: 10.1109/COMST.2021.3135829.
    [2] OKEGBILE S D, CAI Jun, NIYATO D, et al. Human digital twin for personalized healthcare: Vision, architecture and future directions[J]. IEEE Network, 2023, 37(2): 262–269. doi: 10.1109/MNET.118.2200071.
    [3] CAI Qing, ZHOU Yiqing, LIU Ling, et al. Collaboration of heterogeneous edge computing paradigms: How to fill the gap between theory and practice[J]. IEEE Wireless Communications, 2024, 31(1): 110–117. doi: 10.1109/MWC.014.2200283.
    [4] LI Zhuo, ZHOU Xu, and QIN Yifang. A survey of mobile edge computing in the industrial internet[C]. 2019 7th International Conference on Information, Macao, China, 2019: 94–98. doi: 10.1109/ICICN.2019.8834959.
    [5] MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201.
    [6] CHEN Xiangyi, BI Yuanguo, CHEN Xueping, et al. Dynamic service migration and request routing for microservice in multicell mobile-edge computing[J]. IEEE Internet of Things Journal, 2022, 9(15): 13126–13143. doi: 10.1109/JIOT.2022.3140183.
    [7] CHEN Jiayuan, YI Changyan, WANG Ran, et al. Learning aided joint sensor activation and mobile charging vehicle scheduling for energy-efficient WRSN-based industrial IoT[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5064–5078. doi: 10.1109/TVT.2022.3224443.
    [8] LIANG Zezu, LIU Yuan, LOK T M, et al. Multi-cell mobile edge computing: Joint service migration and resource allocation[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5898–5912. doi: 10.1109/TWC.2021.3070974.
    [9] LIANG Zezu, LIU Yuan, LOK T M, et al. Multiuser computation offloading and downloading for edge computing with virtualization[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4298–4311. doi: 10.1109/TWC.2019.2922613.
    [10] SHI You, YI Changyan, WANG Ran, et al. Service migration or task rerouting: A two-timescale online resource optimization for MEC[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1503–1519. doi: 10.1109/TWC.2023.3290005.
    [11] XIA Zhuoqun, MAO Xiaoxiao, GU Ke, et al. Dual-mode data forwarding scheme based on interest tags for fog computing-based SIoVs[J]. IEEE Transactions on Network and Service Management, 2022, 19(3): 2780–2797. doi: 10.1109/TNSM.2022.3161539.
    [12] HU Yi, WANG Hao, WANG Liangyuan, et al. Joint deployment and request routing for microservice call graphs in data centers[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(11): 2994–3011. doi: 10.1109/TPDS.2023.3311767.
    [13] CHEN Long, ZHENG Shaojie, WU Yalan, et al. Resource and fairness-aware digital twin service caching and request routing with edge collaboration[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1881–1885. doi: 10.1109/LWC.2023.3298200.
    [14] FENG Hao, GUO Songtao, YANG Li, et al. Collaborative data caching and computation offloading for multi-service mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9408–9422. doi: 10.1109/TVT.2021.3099303.
    [15] SHEN Qiaoqiao, HU Binjie, and XIA Enjun. Dependency-aware task offloading and service caching in vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 13182–13197. doi: 10.1109/TVT.2022.3196544.
    [16] HE Ting, KHAMFROUSH H, WANG Shiqiang, et al. It’s hard to share: Joint service placement and request scheduling in edge clouds with sharable and non-sharable resources[C]. 2018 IEEE 38th International Conference on Distributed Computing Systems, Vienna, Austria, 2018: 365–375. doi: 10.1109/ICDCS.2018.00044.
    [17] WANG Shiqiang, URGAONKAR R, HE Ting, et al. Dynamic service placement for mobile micro-clouds with predicted future costs[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(4): 1002–1016. doi: 10.1109/TPDS.2016.2604814.
    [18] 杨守义, 成昊泽, 党亚萍. 基于集群协作的云雾混合计算资源分配和负载均衡策略[J]. 电子与信息学报, 2023, 45(7): 2423–2431. doi: 10.11999/JEIT220719.

    YANG Shouyi, CHENG Haoze, and DANG Yaping. Resource allocation and load balancing strategy in cloud-fog hybrid computing based on cluster-collaboration[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2423–2431. doi: 10.11999/JEIT220719.
    [19] 杨守义, 李富康, 任瑞敏. 信任环境下考虑系统公平性的边缘计算卸载策略和资源分配[J]. 通信学报, 2024, 45(3): 142–154. doi: 10.11959/j.issn.1000-436x.2024030.

    YANG Shouyi, LI Fukang, and REN Ruimin. Edge computing offloading policies and resource allocation considering system fairness in trusted environments[J]. Journal on Communications, 2024, 45(3): 142–154. doi: 10.11959/j.issn.1000-436x.2024030.
    [20] LYU Xinchen, TIAN Hui, SENGUL C, et al. Multiuser joint task offloading and resource optimization in proximate clouds[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3435–3447. doi: 10.1109/TVT.2016.2593486.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  36
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-29
  • 修回日期:  2024-11-07
  • 网络出版日期:  2024-11-12

目录

    /

    返回文章
    返回