高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向地电极电流场透地通信的两阶段长相关信号捕获方法

徐湛 张旭 杨小龙

徐湛, 张旭, 杨小龙. 面向地电极电流场透地通信的两阶段长相关信号捕获方法[J]. 电子与信息学报. doi: 10.11999/JEIT240399
引用本文: 徐湛, 张旭, 杨小龙. 面向地电极电流场透地通信的两阶段长相关信号捕获方法[J]. 电子与信息学报. doi: 10.11999/JEIT240399
XU Zhan, ZHANG Xu, YANG Xiaolong. Two-stage Long-correlation Signal Acquisition Method for Through-the-earth Communication of the Ground Electrode Current Field[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240399
Citation: XU Zhan, ZHANG Xu, YANG Xiaolong. Two-stage Long-correlation Signal Acquisition Method for Through-the-earth Communication of the Ground Electrode Current Field[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240399

面向地电极电流场透地通信的两阶段长相关信号捕获方法

doi: 10.11999/JEIT240399
基金项目: 国家重点研发项目(2020YFC1511701),北京市教育委员会科学研究计划(KM202211232006),北京信息科技大学促进高校分类发展-重点研究培育基金(2121YJPY222)
详细信息
    作者简介:

    徐湛:男,教授,研究方向为复杂环境无线通信和信号处理

    张旭:男,硕士生,研究方向为透地通信

    杨小龙:男,副教授,研究方向为人工智能与边缘感知

    通讯作者:

    杨小龙 xiaolongyang@bistu.edu.cn

  • 中图分类号: TN929.4

Two-stage Long-correlation Signal Acquisition Method for Through-the-earth Communication of the Ground Electrode Current Field

Funds: The National Key Research and Development Program (2020YFC1511701), The Scientific Research Program of Beijing Municipal Education Commission (KM202211232006), Beijing University of Information Science and Technology promotes the classified development of universities - Key Research and Cultivation Fund (2121YJPY222)
  • 摘要: 地电极电流场透地通信可以为地下强遮蔽空间信息传输提供解决方案。针对接收的电流场信号信噪比(SNR)低、易畸变且受载波频偏影响大导致捕获困难的问题,该文设计一种长同步信号帧结构,在此基础上提出一种联合频偏粗估计和精估计的两阶段长相关信号捕获算法。该算法第1阶段利用接收时域信号中的训练符号,依据最大似然算法进行采样间隔偏差粗估计,并计算采样点补偿间隔粗估计值。第2阶段结合粗估计值和接收信噪比,确定采样点补偿间隔精估计值的遍历范围,进而设计本地补偿后的长相关模板信号,实现电流场信号的精确捕获。本研究在距离地面30.26 m的地下强遮蔽空间中进行了算法性能验证。实验结果表明,与传统的滑动相关算法相比,该文所提算法具有更高的捕获成功概率。
  • 图  1  信号帧结构

    图  2  地下遮蔽空间地电极电流场透地通信系统模型

    图  3  两阶段长相关信号捕获算法

    图  4  发送信号

    图  5  受畸变影响的接收信号

    图  6  不同信噪比下捕获成功概率

    图  7  不同同步信号长度下捕获成功概率

    图  8  地下强遮蔽空间接收点环境

    图  9  接收信号

    图  10  3种算法理论性能和实际性能的比较

    1  基于粗估计值$ \text{N} $遍历计算频偏修正后本地长同步信号

     输入:$ {{\mathrm{Sync}}\_L} $ //本地长同步信号
     输出:$ {{\mathrm{Sync}}\_L}{'} $ //频偏修正后本地长同步信号
     (1) for $ {N'} $ = $ {N}{-}{x} $ to $ {N}{+}{x} $ do
      // $ {N'} $在范围内遍历
     (2)  $ {i} $ = $ {i} $ +1
      // $ {i} $的初始值为0
     (3)  if $\vartheta < 0$
         $ {{\mathrm{Sync}}\_L}{'}{(}{i}{)} $ = interpolation ($ {{\mathrm{Sync}}\_L} $, $ {N'}{(}{i}{)} $)
      //在本地长同步信号信号上每隔$ {N'}{(}{i}{)} $个点插入1个样值,生
      成第$ {i} $个频偏修正后本地长同步信号
     (4)  else $ {{\mathrm{Sync}}\_L}{'}{(}{i}{)} $ = decline ($ {{\mathrm{Syn}}c\_L} $, $ {N'}{(}{i}{)} $)
     //在本地长同步信号信号上每隔$ {N'}{(}{i}{)} $个点去除1个采样点
     (5)  end
     (6) end
     (7) return $ {{\mathrm{Sync}}\_L}{'}{(}{i}{)} $
    下载: 导出CSV

    2  采样点补偿间隔精估计值计算

     输入:$ \text{Sync\_L}{'} $ // 频偏修正后本地长同步信号
     $ {R} $// 接收信号
     输出:$ {N'} $// $ \text{Sync\_L}{'} $与$ {R} $滑动相关峰值最大时对应的采样点补
     偿间隔精估计值
     (1) for $ {i} $ = 1 To $ {{l}}_{{1}}{-}{{l}}_{{2}}{-1} $ do
      // 相关滑动窗口,共有$ {{l}}_{{1}}{-}{{l}}_{{2}}{-1} $个。
     (2)  $ {g}{(}{i}{)} $ = corr($ {R} $, $ \text{Sync\_L}{'}{(}{i}{)} $)
      // $ {R} $与 $ \text{Sync\_L}{'}{(}{i}{)} $进行滑动相关
     (3)  $ {{K}}_{{i}} $ = max($ {d}{(}{i}{)} $)
      //获取相关峰值
     (4) end
     (5) $ {N'} $=find(max($ {{K}}_{{i}}{} $))
      //获取相关峰值最大时对应的采样点补偿间隔精估计值
     (6) return $ {N'} $
    下载: 导出CSV

    表  1  仿真参数

    参数名称 参数值
    发送信号载波频率(Hz) 10
    发射机时钟频率(MHz) 10
    收发机时钟频率偏差(PPM) 0.1 [16]
    收发机采样频率(Hz) 500
    信道类型 加性高斯白噪声信道
    信噪比(dB) –3~6
    同步信号长度 30~70符号
    下载: 导出CSV

    表  2  不同算法捕获成功概率在不同同步信号点数下达到95%所需信噪比(dB)

    接收同步信号
    点数
    滑动相关
    捕获算法
    粗估计捕获
    算法
    长相关捕获
    算法
    1 500 6 4 3
    2 000 5 2 0
    2 500 0 -2
    3 000 –1 –2
    3 500 –2 –4
    下载: 导出CSV
  • [1] MA Honglei, LIU Erwu, WANG Rui, et al. Antenna optimization for decode-and-forward relay in magnetic induction communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3449–3453. doi: 10.1109/TVT.2019.2963357.
    [2] JULTHOCHAI S, KHAMSALEE P, and WONGSAN R. An experimental study of performance enhancement of medium-frequency small loop antennas for through-the-earth at 350 kHz[C]. Proceedings of 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Phanom, Thailand, 2023: 1–4. doi: 10.1109/ECTI-CON58255.2023.10153298.
    [3] ZHOU Chenming, SNYDER D P, EPSTEIN B, et al. Measurement of ambient magnetic field noise for through-the-earth (TTE) communications and historical comparisons[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(3): 720–727. doi: 10.1109/TEMC.2024.3354735.
    [4] DAMIANO N W, YAN Lincan, WHISNER B, et al. Simulation and measurement of through-the-earth, extremely low-frequency signals using copper-clad steel ground rods[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 5088–5095. doi: 10.1109/TIA.2017.2703625.
    [5] WU Lipeng, ZHANG Wenwei, SONG Xianjin, et al. Research on electromagnetic field characteristics of rotating-magnet based mechanical antenna through the earth[J]. International Journal of Applied Electromagnetics and Mechanics, 2024, 72(2): 123–139. doi: 10.3233/JAE-230080.
    [6] PRUEKCHATSIRI C, JANTAUPALEE A, KHAMSALEE P, et al. An experimental study of electrodes for through-the-earth 350 kHz MF Communication[C]. Proceedings of 2023 IEEE International Symposium On Antennas And Propagation (ISAP), Kuala Lumpur, Malaysia, 2023: 1–2. doi: 10.1109/ISAP57493.2023.10389116.
    [7] ZHOU Chenming, SYNDER D P, EPSTEIN B, et al. Magnetic field noise in the ultra-low frequency (ULF) band and historical comparisons[C]. Proceedings of 2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Spokane, USA, 2022: 439–442. doi: 10.1109/EMCSI39492.2022.9889418.
    [8] CHAVES B P and BRAGA A J. An analytical propagation model based on dyadic green’s functions for TTE communications in an arbitrary stratified soil[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 11240–11245. doi: 10.1109/TAP.2022.3184524.
    [9] 龚永俭, 张长轩, 程立康, 等. 地电场环境干扰跟踪分析关键问题研究[J]. 高原地震, 2020, 32(1): 26–38. doi: 10.3969/j.issn.1005-586X.2020.01.005.

    GONG Yongjian, ZHANG Changxuan, CHENG Likang, et al. Study on key problems of tracking analysis of the geoelectric field environmental interference[J]. Plateau Earthquake Research, 2020, 32(1): 26–38. doi: 10.3969/j.issn.1005-586X.2020.01.005.
    [10] JANTAUPALEE A, KHAMSALEE P, and WONGSAN R. Low-frequency wave propagation in the cave[C]. Proceedings of 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Phanom, Thailand, 2023: 1–4. doi: 10.1109/ECTI-CON58255.2023.10153170.
    [11] 杨天绘. 基于电流场传播的矿井透地通信系统研究[D]. [硕士论文], 西安电子科技大学, 2017.

    YANG Tianhui. Research on through-the-earth communication system for mines based on current field propagation[D]. [Master dissertation], Xidian University, 2017.
    [12] YANG Liu, ZHANG Hang, CAI Yang, et al. Blind carrier frequency offset estimation for MIMO-OFDM systems based on the banded structure of covariance matrices for constant modulus signals[J]. IEEE Access, 2018, 6: 51804–51813. doi: 10.1109/ACCESS.2018.2870278.
    [13] 侯文壮. 地下防空洞无线透地通信系统设计与实现[D]. [硕士论文], 哈尔滨工程大学, 2023.

    HOU Wenzhuang. Design and implementation of wireless through-the-earth communication system for underground air raid shelters[D]. [Master dissertation], Harbin Engineering University, 2023.
    [14] ZHANG Gan, XU Zhan, CHEN Jinhui, et al. OFDM signal design based on electrode-based through-the-earth communication[C]. Proceedings of 2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), London, UK, 2021: 40–45. doi: 10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00021.
    [15] JANTAUPALEE A, WONGSAN R, KHAMSALEE P, et al. A study of radio wave propagation in the cave for developing the through-the-earth application[J]. GEOMATE Journal, 2024, 26(118): 74–86.
    [16] 王菊凤, 张宇, 黄徐瑞晗, 等. 对相对频率偏差的探讨与思考[J]. 计量与测试技术, 2022, 49(9): 1–3. doi: 10.15988/j.cnki.1004-6941.2022.9.001.

    WANG Jufeng, ZHANG Yu, HUANG Xuruihan, et al. Discussion and reflection on relative frequency offset[J]. Metrology & Measurement Technique, 2022, 49(9): 1–3. doi: 10.15988/j.cnki.1004-6941.2022.9.001.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  36
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-09-10
  • 网络出版日期:  2024-09-17

目录

    /

    返回文章
    返回