高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法

周师琦 王俊帆 赖俊升 袁毓杰 董哲康

周师琦, 王俊帆, 赖俊升, 袁毓杰, 董哲康. 结合贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法[J]. 电子与信息学报. doi: 10.11999/JEIT240398
引用本文: 周师琦, 王俊帆, 赖俊升, 袁毓杰, 董哲康. 结合贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法[J]. 电子与信息学报. doi: 10.11999/JEIT240398
ZHOU Shiqi, WANG Junfan, LAI Junsheng, YUAN Yujie, DONG Zhekang. Multi-view Adaptive Probabilistic Load Forecasting Combing Bayesian Autoformer Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240398
Citation: ZHOU Shiqi, WANG Junfan, LAI Junsheng, YUAN Yujie, DONG Zhekang. Multi-view Adaptive Probabilistic Load Forecasting Combing Bayesian Autoformer Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240398

结合贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法

doi: 10.11999/JEIT240398
基金项目: 国家自然科学基金(62206062),长三角科技创新共同体联合攻关重点项目(2023CSJGG1300),浙江省属高校基本科研业务费项目(GK229909299001-06)
详细信息
    作者简介:

    周师琦:女, 博士生,研究方向为智能电网、能源管理、深度学习

    王俊帆:女, 博士生,研究方向为能源管理、深度学习

    赖俊升:男, 教授,研究方向为智能电网、能源管理

    袁毓杰:女, 讲师,研究方向为智能电网、能源管理

    董哲康:男, 副教授,研究方向为能源管理、深度学习

    通讯作者:

    袁毓杰 18114026@bjtu.edu.cn

  • 中图分类号: TM715; TP18

Multi-view Adaptive Probabilistic Load Forecasting Combing Bayesian Autoformer Network

Funds: The National Natural Science Foundation of China (62206062), Yangtze River Delta Science and Technology Innovation Community Jointly Tackled Key Project (2023CSJGG1300), The Fundamental Research Funds for the Provincial University of Zhejiang (GK229909299001-06)
  • 摘要: 建立准确的电力负荷短期预测模型对于电力系统的稳定运行和智能化进程至关重要。目前的主流预测方法无法很好地突破数据波动性和模型不确定性两个问题。基于此,该文提出一种基于贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法。具体地,提出自适应特征提取方法获取多维度特征,通过捕捉多尺度特征和时频局部信息,增强模型对负荷数据中高波动性和非线性特征的处理能力。其次,提出基于贝叶斯Autoformer的预测模型,它可以捕获负荷数据中重要子序列特征以及不确定性,并通过贝叶斯优化方法实现概率预测分布和参数分布的动态更新。所提模型在3个量级(GW, MW, KW)的实际负荷数据集上进行一系列实验分析(对比分析、自适应分析、鲁棒性分析)。结果表明,所提预测模型在自适应和准确性方面具有优越的性能,均方根误差(RMSE)、弹球损失(Pinball Loss)、连续概率评分(CRPS),相较对比方法分别提升1.9%, 24.2%, 4.5%。
  • 图  1  电力负荷数据的波动性分析

    图  2  电力负荷数据在不同时期的分布情况

    图  3  电力负荷数据的漂移检测结构

    图  4  基于贝叶斯 Autoformer 的多维自适应电负荷概率预测模型

    图  5  超参数设置

    图  6  3 个电力负荷数据集在不同预测维度下概率预测的结果

    图  7  不同特征选择方法下的预测结果

    表  1  模型的超参数设置

    参数
    编码层数lE4
    解码层数lD4
    多头注意力h8
    模型维度dM24
    滑动窗口长度lW168
    滑动窗口步长dW1
    下载: 导出CSV

    表  2  不同预测模型在3 个数据集下的性能对比结果

    方法 New England (GW) ASU (MW) 400builds (KW)
    RMSE Pinball CRPS RMSE Pinball CRPS RMSE Pinball CRPS
    FPSwq2Q[10] 1.065 9 0.194 7 0.998 1 0.176 7 0.014 73 0.207 1 0.069 1 0.019 6 0.059 2
    QLSTM[8] 0.985 73 0.117 92 0.692 4 0.179 3 0.016 2 0.200 7 0.062 3 0.013 7 0.061 9
    *BNN[15] 1.217 7 0.161 8 0.595 73 0.182 2 0.016 7 0.195 9 0.140 8 0.015 9 0.094 2
    *BSDeT[14] 1.032 4 0.148 2 0.974 3 0.148 93 0.013 72 0.130 82 0.058 23 0.010 93 0.045 22
    **MQR[12] 1.527 3 0.216 9 0.631 0 0.174 9 0.016 8 0.201 5 0.091 6 0.020 7 0.072 8
    **APLF[13] 0.911 02 0.132 83 0.506 72 0.140 62 0.018 2 0.144 73 0.032 22 0.010 52 0.048 13
    本文 0.910 91 0.078 01 0.495 11 0.139 41 0.012 41 0.120 11 0.031 41 0.010 31 0.023 71
    注:上标1,2,3分别表示排名第1、第2和第3;*基于BNN的概率预测模型,**为自适应概率预测模型
    下载: 导出CSV

    表  3  不同注意力机制用于贝叶斯概率预测的比较

    方法 New England ASU 400 builds
    RMSE Pinball CRPS RMSE Pinball CRPS RMSE Pinball CRPS
    BNN+Full 0.943 5 0.082 5 0.790 5 0.190 8 0.015 1 0.147 6 0.032 5 0.010 9 0.024 9
    BNN+Log 0.930 2 0.081 0 0.778 5 0.189 8 0.015 1 0.146 6 0.0322 0.0107 0.0244
    BNN+In 0.943 5 0.079 5 0.763 5 0.190 3 0.014 91 0.146 2 0.031 7 0.011 2 0.024 1
    BNN+Auto 0.915 01 0.078 01 0.742 51 0.188 91 0.014 91 0.144 21 0.031 41 0.010 31 0.023 91
    注:下标1表示排名第1。
    下载: 导出CSV

    表  4  概率预测模型的稳定性分析

    评价指标 RMSE Pinball CRPS
    New
    England
    对照组 0.9150 0.0780 0.7425
    噪声组 0.9157 0.0784 0.7431
    ASU 对照组 0.1889 0.0149 0.1442
    噪声组 0.1890 0.0150 0.1446
    400build 对照组 0.0314 0.0103 0.0239
    噪声组 0.0318 0.0107 0.0240
    下载: 导出CSV
  • [1] LAI C S, YANG Yuxiang, PAN Keda, et al. Multi-view neural network ensemble for short and mid-term load forecasting[J]. IEEE Transactions on Power Systems, 2021, 36(4): 2992–3003. doi: 10.1109/TPWRS.2020.3042389.
    [2] KIM N, PARK H, LEE J, et al. Short-term electrical load forecasting with multidimensional feature extraction[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2999–3013. doi: 10.1109/TSG.2022.3158387.
    [3] LI Jian, DENG Daiyu, ZHAO Junbo, et al. A novel hybrid short-term load forecasting method of smart grid using MLR and LSTM neural network[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2443–2452. doi: 10.1109/TII.2020.3000184.
    [4] DANG Sanlei, PENG Long, ZHAO Jingming, et al. A quantile regression random forest-based short-term load probabilistic forecasting method[J]. Energies, 2022, 15(2): 663. doi: 10.3390/en15020663.
    [5] 王俊帆, 陈毅, 高明煜, 等. 智能交通感知新范式: 面向元宇宙的交通标志检测架构[J]. 电子与信息学报, 2024, 46(3): 777–789. doi: 10.11999/JEIT230357.

    WANG Junfan, CHEN Yi, GAO Mingyu, et al. A new paradigm for intelligent traffic perception: A traffic sign detection architecture for the metaverse[J]. Journal of Electronics and Information Technology, 2024, 46(3): 777–789. doi: 10.11999/JEIT230357.
    [6] WANG Bingzhi, MAZHARI M, and CHUNG C Y. A novel hybrid method for short-term probabilistic load forecasting in distribution networks[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3650–3661. doi: 10.1109/TSG.2022.3171499.
    [7] ZHANG Dongxue, WANG Shuai, LIANG Yuqiu, et al. A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer[J]. Energy, 2023, 264: 126172. doi: 10.1016/j.energy.2022.126172.
    [8] WANG Yi, GAN Dahua, SUN Mingyang, et al. Probabilistic individual load forecasting using pinball loss guided LSTM[J]. Applied Energy, 2019, 235: 10–20. doi: 10.1016/j.apenergy.2018.10.078.
    [9] LUO Long, DONG Jizhe, KONG Weizhe, et al. Short-term probabilistic load forecasting using quantile regression neural network with accumulated hidden layer connection structure[J]. IEEE Transactions on Industrial Informatics, 2024, 20(4): 5818–5828. doi: 10.1109/TII.2023.3341242.
    [10] FAUSTINE A and PEREIRA L. FPSeq2Q: Fully parameterized sequence to quantile regression for net-load forecasting with uncertainty estimates[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 2440–2451. doi: 10.1109/TSG.2022.3148699.
    [11] LEMOS-VINASCO J, BACHER P, and MØLLER J K. Probabilistic load forecasting considering temporal correlation: Online models for the prediction of households’ electrical load[J]. Applied Energy, 2021, 303: 117594. doi: 10.1016/j.apenergy.2021.117594.
    [12] BRACALE A, CARAMIA P, DE FALCO P, et al. Multivariate quantile regression for short-term probabilistic load forecasting[J]. IEEE Transactions on Power Systems, 2020, 35(1): 628–638. doi: 10.1109/TPWRS.2019.2924224.
    [13] ÁLVAREZ V, MAZUELAS S, and LOZANO J A. Probabilistic load forecasting based on adaptive online learning[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3668–3680. doi: 10.1109/TPWRS.2021.3050837.
    [14] YU Binbin, LI Jianjing, LIU Che, et al. A novel short-term electrical load forecasting framework with intelligent feature engineering[J]. Applied Energy, 2022, 327: 120089. doi: 10.1016/j.apenergy.2022.120089.
    [15] BRUSAFERRI A, MATTEUCCI M, SPINELLI S, et al. Probabilistic electric load forecasting through Bayesian mixture density networks[J]. Applied Energy, 2022, 309: 118341. doi: 10.1016/j.apenergy.2021.118341.
    [16] ISO NEW England[EB/OL]. https://www.iso-ne.com, 2024.
    [17] Metabolism[OL]. https://cm.asu.edu, 2023.
    [18] ANAO[OL]. https://www.anao.gov.au/work/performance-audit, 2023.
    [19] FEKRI M N, PATEL H, GROLINGER K, et al. Deep learning for load forecasting with smart meter data: Online adaptive recurrent neural network[J]. Applied Energy, 2021, 282: 116177. doi: 10.1016/j.apenergy.2020.116177.
    [20] FAN Guofeng, PENG Liling, and HONG W C. Short-term load forecasting based on empirical wavelet transform and random forest[J]. Electrical Engineering, 2022, 104(6): 4433–4449. doi: 10.1007/s00202-022-01628-y.
    [21] 董哲康, 钱智凯, 周广东, 等. 基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J]. 电子与信息学报, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.

    DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, et al. Memory circuit design, implementation and analysis based on Memristor full-function Pavlov associative[J]. Journal of Electronics and Information Technology, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.
    [22] CHEN Minghao, PENG Houwen, FU Jianlong, et al. AutoFormer: Searching transformers for visual recognition[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 12270–12280. doi: 10.1109/ICCV48922.2021.01205.
    [23] CAO Defu, WANG Yujing, DUAN Juanyong, et al. Spectral temporal graph neural network for multivariate time-series forecasting[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1491.
    [24] LI Lei, XUE Zhigang, and DU Xiuquan. ASCRB: Multi-view based attentional feature selection for CircRNA-binding site prediction[J]. Computers in Biology and Medicine, 2023, 162: 107077. doi: 10.1016/j.compbiomed.2023.107077.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  72
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-08-26
  • 网络出版日期:  2024-08-30

目录

    /

    返回文章
    返回