高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全局感知与稀疏特征关联图像级弱监督病理图像分割

张印辉 张金凯 何自芬 刘珈岑 吴琳 李振辉 陈光晨

张印辉, 张金凯, 何自芬, 刘珈岑, 吴琳, 李振辉, 陈光晨. 全局感知与稀疏特征关联图像级弱监督病理图像分割[J]. 电子与信息学报. doi: 10.11999/JEIT240364
引用本文: 张印辉, 张金凯, 何自芬, 刘珈岑, 吴琳, 李振辉, 陈光晨. 全局感知与稀疏特征关联图像级弱监督病理图像分割[J]. 电子与信息学报. doi: 10.11999/JEIT240364
ZHANG Yinhui, ZHANG Jinkai, HE Zifen, LIU Jiacen, WU Lin, LI Zhenhui, CHEN Guangchen. Global Perception and Sparse Feature Associate Image-level Weakly Supervised Pathological Image Segmentation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240364
Citation: ZHANG Yinhui, ZHANG Jinkai, HE Zifen, LIU Jiacen, WU Lin, LI Zhenhui, CHEN Guangchen. Global Perception and Sparse Feature Associate Image-level Weakly Supervised Pathological Image Segmentation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240364

全局感知与稀疏特征关联图像级弱监督病理图像分割

doi: 10.11999/JEIT240364
基金项目: 国家自然科学基金(62061022, 62171206)
详细信息
    作者简介:

    张印辉:男,博士,教授,研究方向为图像处理、机器视觉及机器智能

    张金凯:男,硕士生,研究方向为医学图像处理

    何自芬:女,博士,教授,研究方向为图像处理和机器视觉

    刘珈岑:男,硕士生,研究方向为医学图像处理

    吴琳:女,硕士,副主任医师,研究方向为胃肠病理、肿瘤病理

    李振辉:男,博士,主治医师,研究方向为胃肠道肿瘤影像组学

    陈光晨:男,博士生,研究方向为计算机视觉

    通讯作者:

    何自芬 zyhhzf1998@163.com

  • 中图分类号: TN911.73; TP391.41

Global Perception and Sparse Feature Associate Image-level Weakly Supervised Pathological Image Segmentation

Funds: The National Natural Science Foundation of China (62061022, 62171206)
  • 摘要: 弱监督语义分割方法可以节省大量的人工标注成本,在病理全切片图像(WSI)的分析中有着广泛应用。针对弱监督多实例学习(MIL)方法在病理图像分析中存在的像素实例相互独立缺乏依赖关系,分割结果局部不一致和图像级标签监督信息不充分的问题,该文提出一种全局感知与稀疏特征关联图像级弱监督的端到端多实例学习方法(DASMob-MIL)。首先,为克服像素实例之间的独立性,使用局部感知网络提取特征以建立局部像素依赖,并级联交叉注意力模块构建全局信息感知分支(GIPB)以建立全局像素依赖关系。其次,引入像素自适应细化模块(PAR),通过多尺度邻域局部稀疏特征之间的相似性构建亲和核,解决了弱监督语义分割结果局部不一致的问题。最后,设计深度关联监督模块(DAS),通过对多阶段特征图生成的分割图进行加权融合,并使用权重因子关联损失函数以优化训练过程,以降低弱监督图像级标签监督信息不充分的影响。DASMob-MIL模型在自建的结直肠癌数据集YN-CRC和公共弱监督组织病理学图像数据集LUAD-HistoSeg-BC上与其他模型相比展示出了先进的分割性能,模型权重仅为14 MB,在YN-CRC数据集上F1 Score分别达到了89.5%,比先进的多层伪监督(MLPS)模型提高了3%。实验结果表明,DASMob-MIL仅使用图像级标签实现了像素级的分割,有效改善了弱监督组织病理学图像的分割性能。
  • 图  1  基于MIL的病理图像弱监督语义分割示意图

    图  2  所提出的DASMob-MIL模型总体框架

    图  3  交叉注意力结构与全局依赖关系建立过程

    图  4  不同模型在YN-CRC数据集上的分割结果

    图  5  不同模型在LUAD-HistoSeg-BC数据集上的分割结果

    表  1  不同模型在YN-CRC数据集上的分割性能对比

    模型 F1 EC (%) F1 NEC (%) F1 Score (%) HD EC Precision (%) Recall (%) 权重 (MB) 推理时间(s)
    全监督 U-Net 91.4 99.6 93.0 5.973 95.1 91.4 33.0 0.0112
    MobileNetv3 91.6 99.6 93.1 5.378 95.2 91.6 26.6 0.0056
    弱监督 SA-MIL 35.4 87.5 45.3 42.103 61.8 43.0 7.07 0.1218
    DWS-MIL 76.7 98.7 80.9 27.690 89.5 82.4 6.65 0.0144
    Swin-MIL 82.9 99.6 86.1 18.915 90.3 86.3 105 0.0279
    MLPS 83.4 99.8 86.5 41.701 83.8 91.7 453 0.0220
    本文(DASMob-MIL) 87.3 99.0 89.5 23.576 86.5 94.6 14.0 0.0712
    下载: 导出CSV

    表  2  不同模型在LUAD-HistoSeg-BC数据集上的分割性能对比

    模型F1 TM (%)F1 NTM (%)F1 Score (%)HD TMPrecision (%)Recall (%)权重(MB)推理时间(s)
    弱监督MLPS56.999.961.838.02976.456.74530.0133
    SA-MIL65.910069.819.01278.670.87.070.0268
    DWS-MIL68.594.971.519.57876.975.96.650.0079
    Swin-MIL71.699.474.719.14874.582.51050.0209
    本文(DASMob-MIL)73.498.576.323.51573.684.614.00.0378
    下载: 导出CSV

    表  3  不同局部特征提取主干对分割精度的影响

    主干F1 EC(%)F1 NEC(%)F1 Score(%)HD ECPrecision(%)Recall(%)权重(MB)推理时间(s)
    VGG-1659.910067.5159.92957.298.41000.0624
    ResNet5070.799.876.242.56574.685.82810.0349
    EfficientNetv273.299.678.278.89472.091.32120.0463
    ShuffleNetv275.599.480.073.64275.590.069.00.0185
    U-Net78.298.482.164.23174.095.565.90.0364
    MobileNetv380.199.483.726.62186.286.313.30.0143
    下载: 导出CSV

    表  4  所提出的模块对分割精度的影响

    模型 模块 评价指标
    GIPB PAR DAS F1 EC (%) F1 NEC (%) F1 Score (%) HD EC Precision (%) Recall (%) 权重(MB) 推理时间(s)
    基准 80.1 99.4 83.7 26.621 86.2 86.3 13.3 0.0143
    消融1 82.4 99.6 85.7 15.667 86.3 87.3 13.8 0.0150
    消融2 83.4 99.5 86.4 22.674 88.4 87.6 13.5 0.0285
    消融3 84.5 99.7 87.4 28.712 86.8 90.5 13.3 0.0427
    消融4 83.8 98.3 86.5 18.664 82.0 93.8 14.0 0.0316
    消融5 85.4 99.5 88.1 27.261 89.5 89.2 13.5 0.0625
    消融6 86.0 99.3 88.6 25.358 84.6 95.1 13.9 0.0448
    DASMob-MIL 87.3 99.0 89.5 23.576 86.5 94.6 14.0 0.0712
    下载: 导出CSV

    表  5  PAR模块中迭代次数对分割精度的影响

    $ T $ F1 EC(%) F1 NEC(%) F1 Score(%) HD EC Precision(%) Recall(%) 推理时间(s)
    基准 80.1 99.4 83.7 26.621 86.2 86.3 0.0143
    5 80.6 99.8 84.3 38.394 84.5 88.8 0.0341
    10 84.5 99.7 87.4 28.712 86.8 90.5 0.0427
    15 83.7 99.7 86.7 33.183 86.5 90.7 0.0529
    20 79.9 99.4 83.6 41.216 83.2 88.5 0.0640
    下载: 导出CSV

    表  6  不同GIPB配置对分割精度的影响

    编码器数F1 EC(%)F1 NEC(%)F1 Score(%)HD ECPrecision(%)Recall(%)权重(MB)推理时间(s)
    基准80.199.483.726.62186.286.313.30.0143
    180.199.883.916.78384.987.013.40.0278
    278.399.482.335.05582.287.013.40.0265
    383.499.586.422.67488.487.613.50.0285
    479.998.983.430.95584.087.814.10.0328
    575.699.880.234.78284.282.516.00.0346
    下载: 导出CSV

    表  7  DAS结构中不同侧分支权重系数对分割精度的影响

    分组 权重系数 F1 EC(%) F1 NEC(%) F1 Score(%) HD EC Precision(%) Recall(%) 推理时间(s)
    基准 80.1 99.4 83.7 26.621 86.2 86.3 0.0143
    1 [0.15,0.15,0.2,0.5] 82.4 99.6 85.7 15.667 86.3 87.3 0.0150
    2 [0.1,0.1,0.3,0.5] 81.2 99.7 84.7 19.489 88.0 86.5 0.0151
    3 [0.15,0.15,0.3,0.4] 74.3 99.7 79.1 21.112 75.2 88.8 0.0149
    4 [0.2,0.2,0.3,0.3] 80.6 97.9 83.9 21.314 80.3 90.5 0.0152
    5 [0.2,0.2,0.25,0.35] 81.2 99.6 84.7 20.356 83.0 90.6 0.0150
    下载: 导出CSV
  • [1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394–424. doi: 10.3322/caac.21492.
    [2] ZIDAN U, GABER M M, and ABDELSAMEA M M. SwinCup: Cascaded swin transformer for histopathological structures segmentation in colorectal cancer[J]. Expert Systems with Applications, 2023, 216: 119452. doi: 10.1016/j.eswa.2022.119452.
    [3] JIA Zhipeng, HUANG Xingyi, CHANG E I C, et al. Constrained deep weak supervision for histopathology image segmentation[J]. IEEE Transactions on Medical Imaging, 2017, 36(11): 2376–2388. doi: 10.1109/TMI.2017.2724070.
    [4] CAI Hongmin, YI Weiting, LI Yucheng, et al. A regional multiple instance learning network for whole slide image segmentation[C]. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, USA, 2022: 922–928. doi: 10.1109/BIBM55620.2022.9995017.
    [5] LI Kailu, QIAN Ziniu, HAN Yingnan, et al. Weakly supervised histopathology image segmentation with self-attention[J]. Medical Image Analysis, 2023, 86: 102791. doi: 10.1016/j.media.2023.102791.
    [6] ZHOU Yanzhao, ZHU Yi, YE Qixiang, et al. Weakly supervised instance segmentation using class peak response[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3791–3800. doi: 10.1109/CVPR.2018.00399.
    [7] ZHONG Lanfeng, WANG Guotai, LIAO Xin, et al. HAMIL: High-resolution activation maps and interleaved learning for weakly supervised segmentation of histopathological images[J]. IEEE Transactions on Medical Imaging, 2023, 42(10): 2912–2923. doi: 10.1109/TMI.2023.3269798.
    [8] HAN Chu, LIN Jiatai, MAI Jinhai, et al. Multi-layer pseudo-supervision for histopathology tissue semantic segmentation using patch-level classification labels[J]. Medical Image Analysis, 2022, 80: 102487. doi: 10.1016/j.media.2022.102487.
    [9] DIETTERICH T G, LATHROP R H, and LOZANO-PÉREZ T. Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1/2): 31–71. doi: 10.1016/S0004-3702(96)00034-3.
    [10] XU Gang, SONG Zhigang, SUN Zhuo, et al. CAMEL: A weakly supervised learning framework for histopathology image segmentation[C]. The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 10681–10690. doi: 10.1109/ICCV.2019.01078.
    [11] 徐金东, 赵甜雨, 冯国政, 等. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079–2086. doi: 10.11999/JEIT200263.

    XU Jindong, ZHAO Tianyu, FENG Guozheng, et al. Image segmentation algorithm based on context fuzzy C-means clustering[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2079–2086. doi: 10.11999/JEIT200263.
    [12] 杭昊, 黄影平, 张栩瑞, 等. 面向道路场景语义分割的移动窗口变换神经网络设计[J]. 光电工程, 2024, 51(1): 230304. doi: 10.12086/oee.2024.230304.

    HANG Hao, HUANG Yingping, ZHANG Xurui, et al. Design of Swin Transformer for semantic segmentation of road scenes[J]. Opto-Electronic Engineering, 2024, 51(1): 230304. doi: 10.12086/oee.2024.230304.
    [13] QIAN Ziniu, LI Kailu, LAI Maode, et al. Transformer based multiple instance learning for weakly supervised histopathology image segmentation[C]. The 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 2022: 160–170. doi: 10.1007/978-3-031-16434-7_16.
    [14] HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNet: Criss-cross attention for semantic segmentation [C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 603–612. doi: 10.1109/ICCV.2019.00069.
    [15] RU Lixiang, ZHAN Yibing, YU Baosheng, et al. Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16825–16834. doi: 10.1109/CVPR52688.2022.01634.
    [16] XIE Yuhan, ZHANG Zhiyong, CHEN Shaolong, et al. Detect, Grow, Seg: A weakly supervision method for medical image segmentation based on bounding box[J]. Biomedical Signal Processing and Control, 2023, 86: 105158. doi: 10.1016/j.bspc.2023.105158.
    [17] KWEON H, YOON S H, KIM H, et al. Unlocking the potential of ordinary classifier: Class-specific adversarial erasing framework for weakly supervised semantic segmentation[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 6974–6983. doi: 10.1109/ICCV48922.2021.00691.
    [18] HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]. The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1314–1324. doi: 10.1109/ICCV.2019.00140.
    [19] VIOLA P, PLATT J C, and ZHANG Cha. Multiple instance boosting for object detection[J]. Proceedings of the 18th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2005: 1417–1424.
    [20] RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [21] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [22] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [23] MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet v2: Practical guidelines for efficient CNN architecture design[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 122–138. doi: 10.1007/978-3-030-01264-9_8.
    [24] TAN Mingxing and LE Q V. EfficientNetV2: Smaller models and faster training[C]. The 38th International Conference on Machine Learning, 2021: 10096–10106.
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  13
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-07-17
  • 网络出版日期:  2024-08-02

目录

    /

    返回文章
    返回