高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于互质阵列冗余分析的稀疏阵列设计方法

张宇乐 周豪 胡国平 师俊朋 郑桂妹 宋玉伟

张宇乐, 周豪, 胡国平, 师俊朋, 郑桂妹, 宋玉伟. 基于互质阵列冗余分析的稀疏阵列设计方法[J]. 电子与信息学报. doi: 10.11999/JEIT240348
引用本文: 张宇乐, 周豪, 胡国平, 师俊朋, 郑桂妹, 宋玉伟. 基于互质阵列冗余分析的稀疏阵列设计方法[J]. 电子与信息学报. doi: 10.11999/JEIT240348
ZHANG Yule, ZHOU Hao, HU Guoping, SHI Junpeng, ZHENG Guimei, SONG Yuwei. Sparse Array Design Methods via Redundancy Analysis of Coprime Array[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240348
Citation: ZHANG Yule, ZHOU Hao, HU Guoping, SHI Junpeng, ZHENG Guimei, SONG Yuwei. Sparse Array Design Methods via Redundancy Analysis of Coprime Array[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240348

基于互质阵列冗余分析的稀疏阵列设计方法

doi: 10.11999/JEIT240348
基金项目: 国家自然科学基金(62071476),中国博士后科学基金(2022M723879)
详细信息
    作者简介:

    张宇乐:男,博士生,研究方向为阵列信号处理、稀疏阵列、MIMO雷达

    周豪:男,博士,副教授,研究方向为低空目标探测技术

    胡国平:男,博士,教授,博士生导师,研究方向为雷达信号处理、雷达反隐身技术、无线通信技术和图像处理

    师俊朋:男,博士,教授,博士生导师,研究方向为阵列信号处理、稀疏阵列MIMO雷达、张量信号处理

    郑桂妹:男,博士,副教授,博士生导师,研究方向为电磁矢量传感器阵列信号处理

    宋玉伟:女,博士,讲师,研究方向为MIMO雷达、电磁矢量传感器阵列雷达DOA估计

    通讯作者:

    周豪 17792611529@126.com

  • 中图分类号: TN911.7

Sparse Array Design Methods via Redundancy Analysis of Coprime Array

Funds: The National Natural Science Foundation of China (62071476), China Postdoctoral Science Foundation (2022M723879)
  • 摘要: 互质阵列因具有较低的互耦效应而备受关注,但交替部署的子阵却在一定程度上限制了连续自由度的提升。针对上述问题,该文在分析子阵互差集中冗余虚拟阵元产生条件的基础上,提出了两种子阵移位互质阵列(Coprime Array with Translated Subarray, CATrS),以改善自由度性能。首先,将子阵平移至适当位置以优化布阵结构,并分析了子阵的平移距离。随后,推导了CATrS结构的自由度、连续自由度、孔洞位置和虚拟阵元权重的闭合表达式。理论分析表明,CATrS结构能够在保持物理阵元数量不变的条件下,有效增加自由度和连续自由度,并抑制阵元互耦。最后,利用仿真实验验证了CATrS结构在波达方向估计中的优越性。
  • 图  1  互质阵列示意图

    图  2  CATrS-Ⅰ结构示意图

    图  3  CATrS-Ⅱ结构示意图

    图  4  不同互质阵列的连续自由度、自由度和耦合泄漏量随阵元数量变化对比

    图  5  不同互质阵列的互耦矩阵元素映射图

    图  6  不同互质阵列估计11个目标的空间谱

    图  7  不同互质阵列DOA估计的RMSE对比

    表  1  不同互质阵列的最佳布阵方式、最大连续自由度和最大自由度

    阵列名称物理阵元数量最优$M$和$N$最大连续自由度最大自由度
    CA$T$为偶数$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$$2T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{6T} \mathord{\left/ {\vphantom {{6T} 4}} \right. } 4} - 1$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为偶数$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$$2T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{6T} \mathord{\left/ {\vphantom {{6T} 4}} \right. } 4} - {7 \mathord{\left/ {\vphantom {7 4}} \right. } 4}$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为奇数$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$$2T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{6T} \mathord{\left/ {\vphantom {{6T} 4}} \right. } 4} - {{19} \mathord{\left/ {\vphantom {{19} 4}} \right. } 4}$
    RSRCA-Ⅰ$T$为偶数$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$$3T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - 3$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为偶数$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$$3T$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - {{19} \mathord{\left/ {\vphantom {{19} 4}} \right. } 4}$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为奇数$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$$3T - 2$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - {{39} \mathord{\left/ {\vphantom {{39} 4}} \right. } 4}$
    RSRCA-Ⅱ$T$为偶数$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$$3T + 3$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - 1$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为偶数$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$$3T + 4$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - {3 \mathord{\left/ {\vphantom {3 4}} \right. } 4}$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为奇数$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$$3T + 6$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - {7 \mathord{\left/ {\vphantom {7 4}} \right. } 4}$
    CATrS-Ⅰ$T$为偶数$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - 1$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为偶数$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T - {5 \mathord{\left/ {\vphantom {5 4}} \right. } 4}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - {5 \mathord{\left/ {\vphantom {5 2}} \right. } 2}$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为奇数$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T - {{21} \mathord{\left/ {\vphantom {{21} 4}} \right. } 4}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - {{17} \mathord{\left/ {\vphantom {{17} 2}} \right. } 2}$
    CATrS-Ⅱ$T$为偶数$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - 1$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为偶数$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T + {3 \mathord{\left/ {\vphantom {3 4}} \right. } 4}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - {5 \mathord{\left/ {\vphantom {5 2}} \right. } 2}$
    $T$为奇数且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$为奇数$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T - {5 \mathord{\left/ {\vphantom {5 4}} \right. } 4}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - {{17} \mathord{\left/ {\vphantom {{17} 2}} \right. } 2}$
    下载: 导出CSV

    表  2  不同互质阵列的前3个权重的表达式

    权重 CA ACA RSRCA-Ⅰ RSRCA-Ⅱ CATrS-Ⅰ CATrS-Ⅱ
    $ \omega \left( 1 \right) $ 2 2 2 2 1 1
    $ \omega \left( 2 \right) $ $ \left\{ {\begin{array}{lllllllllll} {N - 1,}&{M = 2} \\ {2,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N,}&{M = 2} \\ {5,}&{M = 3,N = 2} \\ {2,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N - 2,}&{M = 2} \\ {2,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N - 2,}&{M = 2} \\ {2,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N - 1,}&{M = 2} \\ {1,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N - 1,}&{M = 2} \\ {1,}&{M \ge 3} \end{array}} \right. $
    $ \omega \left( 3 \right) $ $\left\{ \begin{array}{ll}N-1, & M=3 \\ 2, & 其它 \end{array} \right.$ $ \{\begin{array}{ll}N, & M=2 \\ 2M-1, & N=3 \\ 2, & 其它 \end{array} $ $\left\{ \begin{array}{ll}N-2, & M=3 \\ 0, & M=2,N=3 \\ 2, & 其它 \end{array} \right.$ $ \left\{ \begin{array}{ll}N-2, & M=3 \\ 0, & M=2,N=3 \\ 2, & 其它 \end{array}\right. $ $ \left\{ \begin{array}{ll}N-1, & M=3 \\ 1, & 其它 \end{array} \right.$ $ \left\{ \begin{array}{ll}N-1, & M=3 \\ 1, & 其它 \end{array} \right.$
    下载: 导出CSV

    表  3  不同互质阵列的阵元位置、连续自由度、自由度、前3个权重和耦合泄漏量

    阵列名称阵元位置连续自由度自由度$ \omega \left( 1 \right) $$ \omega \left( 2 \right) $$ \omega \left( 3 \right) $耦合泄漏量
    CA{0,5,6,10,12,15,18,20,24,25}21392220.2392
    ACA{0,3,5,6,9,10,12,15,20,25}35432250.2496
    RSRCA-Ⅰ{-5,5,6,10,12,15,18,20,24,25}31472220.2371
    RSRCA-Ⅱ{-6,5,6,10,12,15,18,20,24,25}33492220.2369
    CATrS-Ⅰ{0,6,12,17,18,22,24,27,32,37}45591110.1824
    CATrS-Ⅱ{0,5,10,15,16,20,22,25,28,34}41551120.1878
    下载: 导出CSV
  • [1] 巩朋成, 王兆彬, 谭海明, 等. 杂波背景下基于交替方向乘子法的低截获频控阵MIMO雷达收发联合优化方法[J]. 电子与信息学报, 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445.

    GONG Pengcheng, WANG Zhaobin, TAN Haiming, et al. Joint design of the transmit and receive beamforming via alternating direction method of multipliers for LPI of frequency diverse array MIMO radar in the presence of clutter[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445.
    [2] SHI Junpeng, YANG Zai, and LIU Yongxiang. On parameter identifiability of diversity-smoothing-based MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1660–1675. doi: 10.1109/TAES.2021.3126370.
    [3] GONG Pengcheng, SHAO Zhenhai, TU Guangpeng, et al. Transmit beampattern design based on convex optimization for MIMO radar systems[J]. Signal Processing, 2014, 94: 195–201. doi: 10.1016/j.sigpro.2013.06.021.
    [4] MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138.
    [5] PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264.
    [6] VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682.
    [7] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Generalized nested array: Optimization for degrees of freedom and mutual coupling[J]. IEEE Communications Letters, 2018, 22(6): 1208–1211. doi: 10.1109/LCOMM.2018.2821672.
    [8] SHAALAN A M A, DU Jun, and TU Yanhui. Dilated nested arrays with more degrees of freedom (DOFs) and less mutual coupling—part I: The fundamental geometry[J]. IEEE Transactions on Signal Processing, 2022, 70: 2518–2531. doi: 10.1109/TSP.2022.3174451.
    [9] ZHAO Pinjiao, WU Qisong, CHEN Zhengyu, et al. Generalized nested array configuration family for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10380–10392. doi: 10.1109/TVT.2023.3260196.
    [10] PAL P and VAIDYANATHAN P P. Coprime sampling and the MUSIC algorithm[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, USA, 2011: 289–294. doi: 10.1109/DSP-SPE.2011.5739227.
    [11] QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838.
    [12] WANG Xiaomeng and WANG Xin. Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2693–2706. doi: 10.1109/TSP.2019.2899292.
    [13] SHI Junpeng, WEN Fangqing, LIU Yongxiang, et al. Enhanced and generalized coprime array for direction of arrival estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1327–1339. doi: 10.1109/TAES.2022.3200929.
    [14] 刘可, 朱泽政, 于军, 等. 基于互质阵列孔洞分析的稀疏阵列设计方法[J]. 电子与信息学报, 2022, 44(1): 372–379. doi: 10.11999/JEIT201024.

    LIU Ke, ZHU Zezheng, YU Jun, et al. Sparse array design methods based on hole analysis of the coprime array[J]. Journal of Electronics & Information Technology, 2022, 44(1): 372–379. doi: 10.11999/JEIT201024.
    [15] RAZA A, LIU Wei, and SHEN Qing. Thinned coprime array for second-order difference co-array generation with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(8): 2052–2065. doi: 10.1109/TSP.2019.2901380.
    [16] ZHOU Chengwei, GU Yujie, FAN Xing, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 5956–5971. doi: 10.1109/TSP.2018.2872012.
    [17] FAN Qing, LIU Yu, YANG Tao, et al. Fast and accurate spectrum estimation via virtual coarray interpolation based on truncated nuclear norm regularization[J]. IEEE Signal Processing Letters, 2022, 29: 169–173. doi: 10.1109/LSP.2021.3130018.
    [18] WANG Xinghua, CHEN Zhenhong, REN Shiwei, et al. DOA estimation based on the difference and sum coarray for coprime arrays[J]. Digital Signal Processing, 2017, 69: 22–31. doi: 10.1016/j.dsp.2017.06.013.
    [19] ZHANG Yule, Shi Junpeng, ZHOU Hao, et al. Improved moving scheme for coprime arrays in direction of arrival estimation[J]. Digital Signal Processing, 2024, 149: 104514. doi: 10.1016/j.dsp.2024.104514.
    [20] LIU Chunlin and VAIDYANATHAN P P. Robustness of difference coarrays of sparse arrays to sensor failures—part I: A theory motivated by coarray MUSIC[J]. IEEE Transactions on Signal Processing, 2019, 67(12): 3213–3226. doi: 10.1109/TSP.2019.2912882.
    [21] AHMED A, ZHANG Y D, and ZHANG Jiankang. Coprime array design with minimum lag redundancy[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 4125–4129. doi: 10.1109/ICASSP.2019.8683315.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  27
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 修回日期:  2024-12-09
  • 网络出版日期:  2024-12-12

目录

    /

    返回文章
    返回