高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于基序列构造二元互补序列集

沈炳声 周正春 杨洋 范平志

沈炳声, 周正春, 杨洋, 范平志. 基于基序列构造二元互补序列集[J]. 电子与信息学报. doi: 10.11999/JEIT240309
引用本文: 沈炳声, 周正春, 杨洋, 范平志. 基于基序列构造二元互补序列集[J]. 电子与信息学报. doi: 10.11999/JEIT240309
SHEN Bingsheng, ZHOU Zhengchun, YANG Yang, FAN Pingzhi. Constructions of Complementary Sequence Set Based on Base Sequences[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240309
Citation: SHEN Bingsheng, ZHOU Zhengchun, YANG Yang, FAN Pingzhi. Constructions of Complementary Sequence Set Based on Base Sequences[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240309

基于基序列构造二元互补序列集

doi: 10.11999/JEIT240309
基金项目: 国家自然科学基金(12401695, U23A20274, 62171389),四川省自然科学基金创新研究群体(2024NSFTD0015),中央高校基本科研业务费(2682024CX027)
详细信息
    作者简介:

    沈炳声:男,博士,研究方向为序列编码设计、通信雷达一体化

    周正春:男,教授,研究方向为编码理论、通信/雷达波形设计、电子信息对抗

    杨洋:男,教授,研究方向为序列编码设计、通信/雷达波形设计

    范平志:男,教授,研究方向为为高移动性宽带无线通信、信号设计与处理、信息理论与编码、无线频谱资源管理

    通讯作者:

    沈炳声 bsshen9527@swjtu.edu.cn

  • 中图分类号: TN911.2

Constructions of Complementary Sequence Set Based on Base Sequences

Funds: The National Natural Science Foundation of China (12401695, U23A20274, 62171389), The Sichuan Natural Science Foundation Innovation Research Group (2024NSFTD0015), The Fundamental Research Funds for the Central Universities (2682024CX027)
  • 摘要: 互补序列集凭借其理想的非周期自相关函数特性,在通信与感知领域得到广泛应用。针对互补序列集长度受限的问题,该文以基序列为初始序列,利用级联算子和交织算子提出两类二元互补序列集的新构造方法。所提构造填补了二元互补序列集在特定长度上的空白,并解决了由Adhikary和Majhi提出的公开问题。
  • 图  1  瞬时平均功率比曲线

    表  1  短长度Turyn序列

    L序列L序列
    1$ \left( {\begin{array}{*{20}{c}} { + - } \\ { + + } \\ + \\ + \end{array}} \right) $6$ \left( {\begin{array}{*{20}{c}} { + + + - + + + } \\ { + + - - - + - } \\ { + + - + - - } \\ { + + - + + - } \end{array}} \right) $
    2$ \left( {\begin{array}{*{20}{c}} { + + + } \\ { + + - } \\ { + - } \\ { + - } \end{array}} \right) $7$ \left( {\begin{array}{*{20}{c}} { + + - + - + - - } \\ { + + + + - - - + } \\ { + + + - + + + } \\ { + - - + - - + } \end{array}} \right) $
    3$ \left( {\begin{array}{*{20}{c}} { + + - - } \\ { + + - + } \\ { + + + } \\ { + - + } \end{array}} \right) $12$ \left( {\begin{array}{*{20}{c}} { + + + + - + - + - + + + + } \\ { + + + - - + - + - - + + - } \\ { + + + - + + - - + - - - } \\ { + + + - - + - + + - - - } \end{array}} \right) $
    4$ \left( {\begin{array}{*{20}{c}} { + + - + + } \\ { + + + + - } \\ { + + - - } \\ { + - + - } \end{array}} \right) $14$ \left( {\begin{array}{*{20}{c}} { + + - + + + - + - + + + - + + } \\ { + + + - + + - - - + + - + + - } \\ { + + + + - - + - + + - - - - } \\ { + - - - - + - + - + + + + - } \end{array}} \right) $
    5$ \left( {\begin{array}{*{20}{c}} { + + + - - - } \\ { + + - + - + } \\ { + + - + + } \\ { + + - + + } \end{array}} \right) $
    下载: 导出CSV

    表  2  集合大小为4的二元互补序列集

    来源 长度 限制
    文献[11] ${2^{m - 1}} + {2^v}$ $m \ge 2,{\text{ }}v \le m - 1$
    文献[13] $L + 1,{\text{ }}L + 2$ $L$的Golay数
    文献[14] $kL$ $k$是偶移位互补对存在的长度,
    $L$是Golay数
    文献[15] ${L_1} + {L_2}$ ${L_1}$和${L_2}$都是Golay数
    注4(本文) $2L + 1$ $ L\in \{1,2,\cdots ,38\}\cup \{x:x是\text{Golay}数\} $
    注5(本文) ${2^k}L + {2^k} - 1$ $L \in \{ 1,2,3,4,5,6,7,12,14\} ,{\text{ }}k \ge 1$
    注6(本文) $3L - 1$ $ L\in \{x:2\le x\le 40且x是偶数\} $
    下载: 导出CSV
  • [1] GOLAY M. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82–87. doi: 10.1109/TIT.1961.1057620.
    [2] TSENG C C and LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860.
    [3] LI Yuke, ZHOU Yongxing, LI Xueru, et al. Unimodular complete complementary sequence with optimal trade-off between auto- and cross-ambiguity functions for MIMO radars[J]. IEEE Transactions on Intelligent Vehicles, 2024. doi: 10.1109/TIV.2024.3384435. (查阅网上资料,未找到本条文献卷,期,页码信息,请确认) .
    [4] ZHU Jiahua, SONG Yongping, JIANG Nan, et al. Enhanced Doppler resolution and sidelobe suppression performance for golay complementary waveforms[J]. Remote Sensing, 2023, 15(9): 2452. doi: 10.3390/rs15092452.
    [5] ZHOU Yajing, ZHOU Zhengchun, LIU Zilong, et al. Symmetrical Z-Complementary code sets for optimal training in generalized spatial modulation[J]. Signal Processing, 2023, 208: 108990. doi: 10.1016/j.sigpro.2023.108990.
    [6] MEN Xinyu, LIU Tao, LI Yubo, et al. Constructions of 2-D Golay complementary array sets with flexible array sizes for omnidirectional precoding in massive MIMO[J]. IEEE Communications Letters, 2023, 27(5): 1302–1306. doi: 10.1109/LCOMM.2023.3263860.
    [7] 赵羚岚, 杨奕冉, 刘喜庆, 等. 基于完全互补码扩频的通信雷达一体化系统[J]. 无线电通信技术, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.

    ZHAO Linglan, YANG Yiran, LIU Xiqing, et al. Integrated communication and radar system based on complete complementary code spread spectrum[J]. Radio Communications Technology, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.
    [8] LIU Kaiqiang, ZHOU Zhengchun, ADHIKARY A R, et al. New sets of non-orthogonal spreading sequences with low correlation and low PAPR using extended Boolean functions[J]. Designs, Codes and Cryptography, 2023, 91(10): 3115–3139. doi: 10.1007/s10623-023-01247-z.
    [9] 李玉博, 王亚会, 于丽欣, 等. 免调度非正交多址接入上行链路的非2幂次长度二元扩频序列[J]. 电子与信息学报, 2022, 44(4): 1402–1411. doi: 10.11999/JEIT210293.

    LI Yubo, WANG Yahui, YU Lixin, et al. Binary spreading sequences of lengths non-power-of-two for uplink grant-free non-orthogonal multiple access[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1402–1411. doi: 10.11999/JEIT210293.
    [10] PATERSON K G. Generalized Reed-Muller codes and power control in OFDM modulation[J]. IEEE Transactions on Information Theory, 2000, 46(1): 104–120. doi: 10.1109/18.817512.
    [11] CHEN Chaoyu. Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM[J]. IEEE Transactions on Information Theory, 2016, 64(12): 7538–7545. doi: 10.1109/TIT.2016.2613994.
    [12] DAVIS J A and JEDWAB J. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2397–2417. doi: 10.1109/18.796380.
    [13] ADHIKARY A R and MAJHI S. New constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Communications Letters, 2019, 23(7): 1119–1122. doi: 10.1109/LCOMM.2019.2913382.
    [14] SHEN Bingsheng, YANG Yang, and ZHOU Zhengchun. A construction of binary Golay complementary sets based on even-shift complementary pairs[J]. IEEE Access, 2020, 8: 29882–29890. doi: 10.1109/ACCESS.2020.2972598.
    [15] WANG Gaoxiang, ADHIKARY A R, ZHOU Zhengchun, et al. Generalized constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Signal Processing Letters, 2020, 27: 136–140. doi: 10.1109/LSP.2019.2960155.
    [16] SHEN Bingsheng, YANG Yang, FAN Pingzhi, et al. New Z-complementary/complementary sequence sets with non-power-of-two length and low PAPR[J]. Cryptography and Communications, 2022, 14(4): 817–832. doi: 10.1007/s12095-021-00550-7.
    [17] SHEN Bingsheng, MENG Hua, YANG Yang, et al. New constructions of Z-complementary code sets and mutually orthogonal complementary sequence sets[J]. Designs, Codes and Cryptography, 2023, 91(2): 353–371. doi: 10.1007/s10623-022-01112-5.
    [18] COHEN G, RUBIE D, SEBERRY J, et al. A survey of base sequences, disjoint complementary sequences and $ O D(4 t ; t, t, t, t) $[J]. JCMCC, 1989, 5: 69–104.
    [19] KOUKOUVINOS C, KOUNIAS S, and SOTIRAKOGLOU K. On base and Turyn sequences[J]. Mathematics of Computation, 1990, 55(192): 825–837. doi: 10.1090/S0025-5718-1990-1023764-7.
    [20] KOUKOUVINOS C, KOUNIAS S, SEBERRY J, et al. Multiplication of sequences with zero autocorrelation[J]. Australasian Journal of Combinatorics, 1994, 10: 5–15.
    [21] EDMONDSON G M, SEBERRY J, and ANDERSON M R. On the existence of Turyn sequences of length less than 43[J]. Mathematics of Computation, 1994, 62(205): 351–362. doi: 10.2307/2153414.
    [22] ĐOKOVIĆ D Ž. On the base sequence conjecture[J]. Discrete Mathematics, 2010, 310(13/14): 1956–1964. doi: 10.1016/j.disc.2010.03.007.
    [23] TURYN R J. Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings[J]. Journal of Combinatorial Theory, Series A, 1974, 16(3): 313–333. doi: 10.1016/0097-3165(74)90056-9.
    [24] BEST D, ÐOKOVIĆ D Ž, KHARAGHANI H, et al. Turyn-type sequences: Classification, enumeration, and construction[J]. Journal of Combinatorial Designs, 2013, 21(1): 24–35. doi: 10.1002/jcd.21318.
    [25] LONDON S. Constructing new Turyn type sequences, T-sequences and Hadamard matrices[D]. [Ph. D. dissertation], University of Illinois at Chicago, 2013.
    [26] PAI Chengyu, LIN Y J, and CHEN Chaoyu. Optimal and almost-optimal Golay-ZCZ sequence sets with bounded PAPRs[J]. IEEE Transactions on Communications, 2023, 71(2): 728–740. doi: 10.1109/TCOMM.2022.3228932.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-22
  • 修回日期:  2024-08-28
  • 网络出版日期:  2024-09-01

目录

    /

    返回文章
    返回