高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学智能反射表面辅助的UAV群分布式光移动通信

王海卜 张在琛 葛荧萌 曾涵

王海卜, 张在琛, 葛荧萌, 曾涵. 光学智能反射表面辅助的UAV群分布式光移动通信[J]. 电子与信息学报. doi: 10.11999/JEIT240302
引用本文: 王海卜, 张在琛, 葛荧萌, 曾涵. 光学智能反射表面辅助的UAV群分布式光移动通信[J]. 电子与信息学报. doi: 10.11999/JEIT240302
WANG Haibo, ZHANG Zaichen, GE Yingmeng, ZENG Han. Optical Intelligent Reflecting Surfaces-Assisted Distributed OMC for UAV Clusters[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240302
Citation: WANG Haibo, ZHANG Zaichen, GE Yingmeng, ZENG Han. Optical Intelligent Reflecting Surfaces-Assisted Distributed OMC for UAV Clusters[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240302

光学智能反射表面辅助的UAV群分布式光移动通信

doi: 10.11999/JEIT240302
基金项目: 国家自然科学基金(623B2017, 61960206005, 61803211, 61971136, 62171127),国家重点研发计划(2020YFB1806603),中央高校基本科研业务费专项资金(2242022k30001)
详细信息
    作者简介:

    王海卜:男,博士生,研究方向为光学可重构智能反射表面技术、6G光移动通信系统设计

    张在琛:男,教授,研究方向为6G移动通信系统、光移动通信、量子信息技术

    葛荧萌:男,博士生,研究方向为基于人工智能的基带信号处理算法

    曾涵:女,博士生,研究方向为自由空间光通信系统和UAV-自由空间光通信系统信道建模

    通讯作者:

    张在琛 zczhang@seu.edu.cn

  • 中图分类号: TN929.12

Optical Intelligent Reflecting Surfaces-Assisted Distributed OMC for UAV Clusters

Funds: The National Natural Science Foundation of China (623B2017, 61960206005, 61803211, 61971136, 62171127), The National Key R&D Program of China (2020YFB1806603), The Fundamental Research Funds for the Central Universities (2242022k30001)
  • 摘要: 随着无人机(UAV)系统的规模持续扩大以及对更高通信速率的需求增长,UAV光移动通信(UAV-OMC)已经成为一个有前景的技术方向。然而,传统的UAV-OMC难以支持多UAV之间的通信。该文基于光学智能反射表面(OIRS)技术,提出一个适用于UAV群的分布式OMC系统。通过在特定的UAV上设置OIRS,利用OIRS将光信号从单个UAV节点扩散到多个UAV节点。这一系统在保留UAV-OMC系统的高能效和高速度的同时,能够支持分布式UAV群的通信。对所提出的系统进行了数学建模,考虑了一系列现实因素,如OIRS的光束控制、UAV之间的相对运动和UAV的抖动等,这些因素都符合实际系统的特点。此外,该文还推导出了系统的误比特率(BER)和渐进中断概率的闭式表达式。基于理论分析和模拟结果,讨论了各个参数和系统设计的影响。
  • 图  1  OIRS辅助的UAV集群分布式OMC系统示意图

    图  2  UAV通信场景下OIRS波束聚焦与对准示意图

    图  3  不同参数下的OIRS辅助的UAV集群OMC系统的理论BER和仿真BER

    表  1  系统参数

    参数
    光波长 ($\lambda $)1550 nm
    接收机的噪声方差($ \sigma _n^2 $)${10^{ - 6}}$
    发射端发散角度($ \phi $)6 mrad
    发射端抖动标准差($ {\sigma _{{\varphi _{{t_s}}}}} $)$2 \times {10^{ - 3}}$
    从发射端到OIRS的链路距离($ {l_{s,o}} $)100 m
    大气衰减系数(${\iota _n}$)0.9
    OIRS到从属UAV n的链路距离($ {l_{o,{r_n}}} $)50 m
    接收机直径 (2a)20 cm
    下载: 导出CSV
  • [1] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [2] 朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述[J]. 移动通信, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [3] DABIRI M T, SADOUGH S M S, and ANSARI I S. Tractable optical channel modeling between UAVs[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 11543–11550. doi: 10.1109/TVT.2019.2940226.
    [4] ZHANG Zaichen, DANG Jian, WU Liang, et al. Optical mobile communications: Principles, implementation, and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 471–482. doi: 10.1109/TVT.2018.2880817.
    [5] NAJAFI M, SCHMAUSS B, and SCHOBER R. Intelligent reflecting surfaces for free space optical communication systems[J]. IEEE Transactions on Communications, 2021, 69(9): 6134–6151. doi: 10.1109/TCOMM.2021.3084637.
    [6] JAMALI V, AJAM H, NAJAFI M, et al. Intelligent reflecting surface assisted free-space optical communications[J]. IEEE Communications Magazine, 2021, 59(10): 57–63. doi: 10.1109/MCOM.001.2100406.
    [7] WANG Haibo, ZHANG Zaichen, ZHU Bingcheng, et al. Approaches to array-type optical IRSs: Schemes and comparative analysis[J]. Journal of Lightwave Technology, 2022, 40(12): 3576–3591. doi: 10.1109/JLT.2022.3152812.
    [8] MING Rui, ZHOU Zhiyan, LUO Xiwen, et al. Optical tracking system for multi-UAV clustering[J]. IEEE Sensors Journal, 2021, 21(17): 19382–19394. doi: 10.1109/JSEN.2021.3091280.
    [9] DABIRI M T, REZAEE M, MOHAMMADI L, et al. Modulating retroreflector based free space optical link for UAV-to-ground communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8631–8645. doi: 10.1109/TWC.2022.3167945.
    [10] NATH S, SENGAR S, SHRIVASTAVA S K, et al. Impact of atmospheric turbulence, pointing error, and traffic pattern on the performance of cognitive hybrid FSO/RF system[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4): 1194–1207. doi: 10.1109/TCCN.2019.2952116.
    [11] SANDALIDIS H G, TSIFTSIS T A, KARAGIANNIDIS G K, et al. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors[J]. IEEE Communications Letters, 2008, 12(1): 44–46. doi: 10.1109/LCOMM.2008.071408.
    [12] IJAZ M, GHASSEMLOOY Z, PEREZ J, et al. Enhancing the atmospheric visibility and fog attenuation using a controlled FSO channel[J]. IEEE Photonics Technology Letters, 2013, 25(13): 1262–1265. doi: 10.1109/LPT.2013.2264046.
    [13] SUN Shiyuan, WANG Tengjiao, YANG Fang, et al. Intelligent reflecting surface-aided visible light communications: Potentials and challenges[J]. IEEE Vehicular Technology Magazine, 2022, 17(1): 47–56. doi: 10.1109/MVT.2021.3127869.
    [14] AJAM H, NAJAFI M, JAMALI V, et al. Modeling and design of IRS-assisted multilink FSO systems[J]. IEEE Transactions on Communications, 2022, 70(5): 3333–3349. doi: 10.1109/TCOMM.2022.3163767.
    [15] WANG Zhengdao and GIANNAKIS G B. A simple and general parameterization quantifying performance in fading channels[J]. IEEE Transactions on Communications, 2003, 51(8): 1389–1398. doi: 10.1109/TCOMM.2003.815053.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  80
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-19
  • 修回日期:  2024-07-16
  • 网络出版日期:  2024-08-02

目录

    /

    返回文章
    返回