高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种无扰的多载波互补码分多址通信雷达一体化方案

沈炳声 周正春 杨洋 范平志

沈炳声, 周正春, 杨洋, 范平志. 一种无扰的多载波互补码分多址通信雷达一体化方案[J]. 电子与信息学报. doi: 10.11999/JEIT240297
引用本文: 沈炳声, 周正春, 杨洋, 范平志. 一种无扰的多载波互补码分多址通信雷达一体化方案[J]. 电子与信息学报. doi: 10.11999/JEIT240297
SHEN Bingsheng, ZHOU Zhengchun, YANG Yang, FAN Pingzhi. A Non-interference Multi-Carrier Complementary Coded Division Multiple Access Dual-Functional Radar-Communication Scheme[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240297
Citation: SHEN Bingsheng, ZHOU Zhengchun, YANG Yang, FAN Pingzhi. A Non-interference Multi-Carrier Complementary Coded Division Multiple Access Dual-Functional Radar-Communication Scheme[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240297

一种无扰的多载波互补码分多址通信雷达一体化方案

doi: 10.11999/JEIT240297
基金项目: 国家自然科学基金 (U23A20274, 62171389),四川省自然科学基金创新研究群体 (2024NSFTD0015),中央高校基本科研业务费 (2682024CX027)
详细信息
    作者简介:

    沈炳声:男,博士,研究方向为序列编码设计、通信雷达一体化

    周正春:男,教授,研究方向为编码理论、通信/雷达波形设计、电子信息对抗、人工智能

    杨洋:男,教授,研究方向为序列编码设计、通信/雷达波形设计

    范平志:男,教授,研究方向为为高移动性宽带无线通信、信号设计与处理、信息理论与编码、无线频谱资源管理

    通讯作者:

    沈炳声 bsshen9527@swjtu.edu.cn

  • 中图分类号: TN958

A Non-interference Multi-Carrier Complementary Coded Division Multiple Access Dual-Functional Radar-Communication Scheme

Funds: The National Natural Science Foundation of China (U23A20274, 62171389), Sichuan Natural Science Foundation Innovation Research Group (2024NSFTD0015), The Fundamental Research Funds for the Central Universities (2682024CX027)
  • 摘要: 随着新兴应用的不断涌现,频谱拥堵问题日益严重。通信雷达一体化(DFRC)是解决频谱拥堵问题的关键技术之一。然而,如何解决通信与雷达之间的相互干扰并实现高通信速率是通信雷达一体化亟待解决的基础难题。该文以多载波互补码分多址技术为基础,设计一种适用于多用户场景的新型通信雷达一体化信号。理论分析和仿真结果表明,与典型的扩频方案相比,所提方案可以实现通信雷达的无扰传输,并具有低的误码率与高的通信速率。
  • 图  1  完备互补码的非周期相关函数

    图  2  通信雷达一体化系统模型示意图

    图  3  发射端框图

    图  4  通信接收端框图

    图  5  不同扩频码的误码率性能

    图  6  单用户通信速率

    图  7  相关函数分析

    图  8  速度-峰值旁瓣比

    图  9  匹配滤波器输出

    图  10  目标距离-速度检测

  • [1] LIU Rang, LI Ming, LIU Qian, et al. Dual-functional radar-communication waveform design: A symbol-level precoding approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1316–1331. doi: 10.1109/JSTSP.2021.3111438.
    [2] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [3] PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038.
    [4] YE Zhifan, ZHOU Zhengchun, FAN Pingzhi, et al. Low ambiguity zone: Theoretical bounds and doppler-resilient sequence design in integrated sensing and communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1809–1822. doi: 10.1109/JSAC.2022.3155510.
    [5] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [6] LIU Fan, MASOUROS C, RATNARAJAH T, et al. On range sidelobe reduction for dual-functional radar-communication waveforms[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1572–1576. doi: 10.1109/LWC.2020.2997959.
    [7] SU Nanchi, LIU Fan, and MASOUROS C. Sensing-assisted eavesdropper estimation: An ISAC breakthrough in physical layer security[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3162–3174. doi: 10.1109/TWC.2023.3306029.
    [8] JIA Hanbo, LI Xiaoshuai, and MA Lin. Physical layer security optimization with Cramér-Rao bound metric in ISAC systems under sensing-specific imperfect CSI model[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6980–6992. doi: 10.1109/TVT.2023.3347527.
    [9] YU Zhiyuan, REN Hong, PAN Cunhua, et al. Active RIS aided ISAC systems: Beamforming design and performance analysis[J]. IEEE Transactions on Communications, 2024, 72(3): 1578–1595. doi: 10.1109/TCOMM.2023.3332856.
    [10] ZHU Qi, LI Ming, LIU Rang, et al. Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9636–9640. doi: 10.1109/TVT.2023.3249752.
    [11] LYU Zhonghao, ZHU Guangxu, and XU Jie. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2424–2440. doi: 10.1109/TWC.2022.3211533.
    [12] GU Xiaohui and ZHANG Guoan. A survey on UAV-assisted wireless communications: Recent advances and future trends[J]. Computer Communications, 2023, 208: 44–78. doi: 10.1016/j.comcom.2023.05.013.
    [13] CHEN Xingbo, WANG Xiaomo, XU Shanfeng, et al. A novel radar waveform compatible with communication[C]. 2011 International Conference on Computational Problem-Solving (ICCP), Chengdu, China, 2011: 1–5. doi: 10.1109/ICCPS.2011.6092272.
    [14] 曾浩, 吉利霞, 李凤, 等. 16QAM-LFM雷达通信一体化信号设计[J]. 通信学报, 2020, 41(3): 182–189. doi: 10.11959/j.issn.1000-436x.2020050.

    ZENG Hao, JI Lixia, LI Feng, et al. 16QAM-LFM waveform design for integrated radar and communication[J]. Journal on Communications, 2020, 41(3): 182–189. doi: 10.11959/j.issn.1000-436x.2020050.
    [15] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
    [16] KIHEI B, COPELAND J A, and CHANG Yusun. Design considerations for vehicle-to-vehicle IEEE 802.11p radar in collision avoidance[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, 2015: 1–7. doi: 10.1109/GLOCOM.2015.7417441.
    [17] ŞAHIN A, HOQUE S S M, and CHEN Chaoyu. Index modulation with circularly-shifted chirps for dual-function radar and communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 2938–2952. doi: 10.1109/TWC.2021.3117063.
    [18] XU S J, CHEN Y, and ZHANG P. Integrated radar and communication based on DS-UWB[C]. 2006 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine, 2006: 142–144. doi: 10.1109/UWBUS.2006.307182.
    [19] XU Shaojian, CHEN Bing, and ZHANG Ping. Radar-communication integration based on DSSS techniques[C]. 2006 8th international Conference on Signal Processing, Guilin, China, 2006: 1–4. doi: 10.1109/ICOSP.2006.346041.
    [20] JAMIL M, ZEPERNICK H J, and PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6. doi: 10.1109/MILCOM.2008.4753277.
    [21] TANG Lan, ZHANG Ke, DAI Haipeng, et al. Analysis and optimization of ambiguity function in radar-communication integrated systems using MPSK-DSSS[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1546–1549. doi: 10.1109/LWC.2019.2926708.
    [22] CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Code-division OFDM joint communication and sensing system for 6G machine-type communication[J]. IEEE Internet of Things Journal, 2021, 8(15): 12093–12105. doi: 10.1109/JIOT.2021.3060858.
    [23] 李晓柏, 杨瑞娟, 程伟, 等. 新的互补序列在雷达通信一体化中的应用[J]. 系统工程与电子技术, 2021, 43(3): 693–699. doi: 10.12305/j.issn.1001-506X.2021.03.12.

    LI Xiaobai, YANG Ruijuan, CHENG Wei, et al. Application of a novel complementary signal to integrated radar and communication[J]. Systems Engineering and Electronics, 2021, 43(3): 693–699. doi: 10.12305/j.issn.1001-506X.2021.03.12.
    [24] 赵羚岚, 杨奕冉, 刘喜庆, 等. 基于完全互补码扩频的通信雷达一体化系统[J]. 无线电通信技术, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.

    ZHAO Linglan, YANG Yiran, LIU Xiqing, et al. Integrated communication and radar system based on complete complementary code spread spectrum[J]. Radio Communications Technology, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.
    [25] LIU Xiqing, ZHAO Linglan, LIU Wenjing, et al. Complementary coded scrambling RadCom system-an integrated radar and communication design in multi-user-multi-target scenarios[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 544–558. doi: 10.1109/TVT.2023.3301030.
    [26] TSENG C C and LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860.
    [27] GOLAY M. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82–87. doi: 10.1109/TIT.1961.1057620.
    [28] SUEHIRO N and HATORI M. N-shift cross-orthogonal sequences[J]. IEEE Transactions on Information Theory, 1988, 34(1): 143–146. doi: 10.1109/18.2615.
    [29] BORWEIN P B and FERGUSON R A. A complete description of Golay pairs for lengths up to 100[J]. Mathematics of Computation, 2003, 73(246): 967–985. doi: S0025-5718(3)01576-X. doi: 10.1090/S0025-5718-03-01576-X.
    [30] GU Zhi, ZHOU Zhengchun, ADHIKARY A R, et al. Asymptotically optimal Golay-ZCZ sequence sets with flexible length[J]. Chinese Journal of Electronics, 2023, 32(4): 806–820. doi: 10.23919/cje.2022.00.266.
    [31] JIN Yi and KOGA H. Basic properties of the complete complementary codes using the DFT matrices and the Kronecker products[C]. 2008 International Symposium on Information Theory and Its Applications, Auckland, New Zealand, 2008: 1–6. doi: 10.1109/ISITA.2008.4895532.
    [32] 孙思月. 基于互补码的多用户无线传输技术及码设计方法[D]. [博士论文], 哈尔滨工业大学, 2014.

    SUN Siyue. Research on complementary coded multi-user wireless communication techniques and code design[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2014.
  • 加载中
图(10)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  76
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-19
  • 修回日期:  2024-06-26
  • 网络出版日期:  2024-06-30

目录

    /

    返回文章
    返回